• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integrais (áreas) [dúvida]

Integrais (áreas) [dúvida]

Mensagempor citadp » Qua Jun 20, 2012 11:21

Boas, tenho um exercicio de exame que eu não sei como se faz.

Calcule a área das curvas y = -x^2 + 4/3 e y = x^3/3. Note que as duas curvas admitem o mesmo ponto de abcissa 1.

Ora o que eu costumava fazer era -x^2+4/3 = x^3/3 e igualava a zero e depois fazio o integral dos pontos, mas este exercicio é diferente, não sei como aplicar.
citadp
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sáb Jun 02, 2012 13:11
Formação Escolar: SUPLETIVO
Área/Curso: Informática
Andamento: cursando

Re: Integrais (áreas) [dúvida]

Mensagempor Russman » Qua Jun 20, 2012 13:56

A area delimitada entre as curvas, é isso?
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Integrais (áreas) [dúvida]

Mensagempor citadp » Qua Jun 20, 2012 14:44

Sim
citadp
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sáb Jun 02, 2012 13:11
Formação Escolar: SUPLETIVO
Área/Curso: Informática
Andamento: cursando

Re: Integrais (áreas) [dúvida]

Mensagempor Russman » Qui Jun 21, 2012 10:54

O primeira que você tem de fazer é calcular os pontos em que as curvas se intersectam. Estes serão seus limites de integração.

Fazendo isso, começamos com

-x^{2} + \frac{4}{3} = \frac{x^{3}}{3} \Rightarrow x^{3}+3x^{2}-4=0.

Observe que x=1 é uma raíz. As outras serão , portanto, calculadas de

x^{3}+3x^{2}-4=0 \Rightarrow (x-1)(x^{2}+4x+4) = 0 \Rightarrow (x-1)(x+2)^{2}=0.

Assim, os pontos que as curvas se intersectam são equivalentes a x=-2 e x=1.

Veja que neste intervalo a função y=-x^{2} + \frac{4}{3} é sempre maior que y=\frac{x^{3}}{3}.

Logo, a área delimitada pelas curvas será

A=\int_{-2}^{1} \left (-x^{2}+\frac{4}{3}-\frac{x^{3}}{3}  \right )dx.

Agora basta efetuar a integração.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Integrais (áreas) [dúvida]

Mensagempor Russman » Qui Jun 21, 2012 10:58

Você deve calcular A=\frac{9}{4}.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.