por jvabatista » Qua Jun 06, 2012 11:43
Como posso resolver o exercício abaixo? Tentei utilizar propriedades dos limites, definição formal, mas não cheguei a lugar algum.
Seja f uma função definioda em R e

. Mostre que:
a)

b)

.
-
jvabatista
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Seg Abr 16, 2012 22:01
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
por hygorvv » Qua Jun 06, 2012 15:58
jvabatista escreveu:Como posso resolver o exercício abaixo? Tentei utilizar propriedades dos limites, definição formal, mas não cheguei a lugar algum.
Seja f uma função definioda em R e

. Mostre que:
a)

b)

.
a)Sendo

, temos:


b)

Espero que seja isso e que te ajude.
-
hygorvv
- Usuário Ativo

-
- Mensagens: 23
- Registrado em: Ter Jun 05, 2012 00:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
por jvabatista » Qua Jun 06, 2012 17:32
Muito obrigado! Foi de grande ajuda. Continuarei enviando dúvidas que me surgirem. Abraços.
-
jvabatista
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Seg Abr 16, 2012 22:01
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
por adauto martins » Ter Out 14, 2014 20:05
a)f(3x)/x=3.(f(x3x)/3x)...como

,entao

,portanto

...
b)

-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Limites pela definição formal
por joaofonseca » Ter Out 11, 2011 09:38
- 1 Respostas
- 2592 Exibições
- Última mensagem por joaofonseca

Qua Out 12, 2011 19:29
Cálculo: Limites, Derivadas e Integrais
-
- Ajuda com a definição formal de limites
por Gustavooguto » Seg Out 13, 2014 23:49
- 1 Respostas
- 2192 Exibições
- Última mensagem por adauto martins

Ter Out 14, 2014 11:19
Funções
-
- Limites pela definição formal
por ramoncampos » Ter Nov 01, 2016 21:20
- 4 Respostas
- 9246 Exibições
- Última mensagem por ramoncampos

Sex Nov 04, 2016 12:39
Cálculo: Limites, Derivadas e Integrais
-
- [Limites] duas variáveis. Prova através da definição formal
por marcosmuscul » Sáb Jan 25, 2014 17:59
- 2 Respostas
- 5939 Exibições
- Última mensagem por marcosmuscul

Ter Fev 04, 2014 10:03
Cálculo: Limites, Derivadas e Integrais
-
- DEFINIÇÃO FORMAL DE LIMITE
por Jadiel Carlos » Qua Mai 24, 2017 14:31
- 0 Respostas
- 2927 Exibições
- Última mensagem por Jadiel Carlos

Qua Mai 24, 2017 14:31
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.