por ricardosanto » Sáb Jun 02, 2012 00:32
Qual a ordem de derivação que calcularah Fxy (ou Fyx) mais rapidamente?


O que quer dizer "calcular mais rapidamente"?
Não consegui interpretar isto.
E o que ele quis dizer com Fxy (ou Fyx) qual a diferença?
Se poder, explica como devo prceder.
Desde já obrigado
-
ricardosanto
- Usuário Dedicado

-
- Mensagens: 33
- Registrado em: Seg Abr 16, 2012 12:17
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia civil
- Andamento: cursando
por Russman » Sáb Jun 02, 2012 02:54
No estudo de Derivadas Parciais se desenvolve o conceito de derivadas cruzadas, isto é, derivar parcialmente uma mesma função em relação a 2 variáveis, por exemplo, x e y.

.
Assim, derivamos a função com relação a x e depois em seguida a y. A pergunta é: E se tivessemos feito ao contrário, isto é, se tivéssemos derivado primeiramente com relação a y e depois em seguida a x, teríamos a mesma função derivada? A respos é sim! Ou seja, derivadas cruzadas são iguais independentemente da ordem de derivação.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por MarceloFantini » Sáb Jun 02, 2012 12:33
É independente se as funções forem de classe

.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por MarceloFantini » Sáb Jun 02, 2012 18:56
Ricardo, o que dissemos é que

quando a função for de classe

, ou seja, tem derivadas parciais contínuas até segunda ordem. Sabendo que são iguais, pode existir uma ordem que facilite o seu trabalho, e é isto que o exercício pede que você encontre. Note que na primeira temos

.
Se derivarmos em relação a x, o termo

se anula pois quando tratamos de derivadas parciais consideramos as outras constantes. Logo

. Agora, derivando em relação a y, segue

.
Tente manter o mesmo raciocínio para a outra.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Derivada Parcial de 2ª Ordem] - Resolução de Questão
por Vitor2+ » Sáb Jun 30, 2012 23:04
- 3 Respostas
- 3509 Exibições
- Última mensagem por Vitor2+

Dom Jul 01, 2012 11:47
Cálculo: Limites, Derivadas e Integrais
-
- Questão regra da cadeia - Derivada parcial
por Sobreira » Qua Mar 13, 2013 00:59
- 1 Respostas
- 2915 Exibições
- Última mensagem por young_jedi

Qui Mar 14, 2013 11:15
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada Parcial de 1ª Ordem] - Derivada parcial num ponto
por Vitor2+ » Dom Jul 01, 2012 16:27
- 6 Respostas
- 4549 Exibições
- Última mensagem por e8group

Seg Jul 02, 2012 10:56
Cálculo: Limites, Derivadas e Integrais
-
- derivada parcial
por jmario » Dom Abr 18, 2010 11:41
- 0 Respostas
- 1733 Exibições
- Última mensagem por jmario

Dom Abr 18, 2010 11:41
Cálculo: Limites, Derivadas e Integrais
-
- Derivada Parcial
por Silva339 » Seg Mar 25, 2013 19:06
- 1 Respostas
- 1847 Exibições
- Última mensagem por DanielFerreira

Sex Mar 29, 2013 02:28
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.