• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[derivada segunda]

[derivada segunda]

Mensagempor nayra suelen » Qua Mai 30, 2012 13:38

na funçao h(x):(x²-4) elevado a 5

a derivada primeira seria f'(x): 5(x²-4).2x

minha duvida é se na derivada segunda
usada a regra da cadeia minha duvida de por causa do 5 seria uma composiçao ou nao
ja deveria ser f''(x): 5(x²-4).2x
no caso a derivada segunda
nayra suelen
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Dom Mai 27, 2012 19:28
Formação Escolar: GRADUAÇÃO
Área/Curso: ciências farmacêuticas
Andamento: cursando

Re: [derivada segunda]

Mensagempor Russman » Qua Mai 30, 2012 14:23

Você pode calcular de 2 formas. A primeira e expandindo a derivada primeira, visto que é polinomial. A segunda seria usar a regra do produto.]

1º Forma:

\frac{df}{dt}(x) = 5({x}^{2}-4)2x = 10{x}^{3} - 40x \Rightarrow \frac{{d}^{2}f}{{dt}^{2}}(x) = 30{x}^{2}-40

2º Forma:
Se tomarmos
g(x) = 10x
w(x) = {x}^{2}-4
Então
\frac{d}{dt}(g(x).w(x)) = g(x).\frac{dw}{dt}(x) + w(x).\frac{dg}{dt}(x) \Rightarrow \frac{d}{dt}(10x({x}^{2}-4)) = 10x.2x + +({x}^{2}-4)10 = 20{X}^{2}+ 10{x}^{2} - 40 = 30{x}^{2}-40
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [derivada segunda]

Mensagempor nayra suelen » Qua Mai 30, 2012 14:42

Russman obrigada pela ajuda consegui etender e refazer
nayra suelen
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Dom Mai 27, 2012 19:28
Formação Escolar: GRADUAÇÃO
Área/Curso: ciências farmacêuticas
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.