por jacquelline » Qui Mai 17, 2012 11:04
Boa noite!
Alguem poderia me ajudar a resolver essa Equação?!

r1 = x + 2y + 1
r2 = 2x + 4y + 3
u = x + 2y + 1 --> du = dx + 2dy
2u = 2x + 4y + 2
2u + 1 = 2x + 4y + 3

(2u + 1)(du - dx) = u(2dx)
(2u + 1)du - (2u + 1)dx = 2udx
(2u + 1)du = 2udx + (2u + 1)dx
(2u + 1)du = 2udx + 2udx + dx
(2u + 1)du = 4udx + dx
(2u + 1)/(4u) du = 2dx






essa resolução esta correta?!
Ah resposta final tem que ser 2x+4y+2+ln|2x+4y+5/4| = 8x
Vou ficar no aguardo de respostas
Desde ja Agradeço

-
jacquelline
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qui Mai 17, 2012 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Eletrica
- Andamento: cursando
por LuizAquino » Sex Mai 18, 2012 19:10
jacquelline escreveu:Boa noite!
Alguem poderia me ajudar a resolver essa Equação?!

r1 = x + 2y + 1
r2 = 2x + 4y + 3
u = x + 2y + 1 --> du = dx + 2dy
2u = 2x + 4y + 2
2u + 1 = 2x + 4y + 3

(2u + 1)(du - dx) = u(2dx)
(2u + 1)du - (2u + 1)dx = 2udx
(2u + 1)du = 2udx + (2u + 1)dx
(2u + 1)du = 2udx + 2udx + dx
(2u + 1)du = 4udx + dx
(2u + 1)/(4u) du = 2dx






essa resolução esta correta?!
Ah resposta final tem que ser 2x+4y+2+ln|2x+4y+5/4| = 8x
Vou ficar no aguardo de respostas
Desde ja Agradeço

Reveja o seguinte trecho:
(2u + 1)du = 4udx + dx
(2u + 1)/(4u) du = 2dx
O correto seria:


Agora refaça o exercício a partir daí.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por jacquelline » Sáb Mai 19, 2012 20:37
Nossa que falha minha
Muito obrigada mesmo pelo ajuda... agora vai fazer um diferença muuuuito grande =D
bjok's

-
jacquelline
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qui Mai 17, 2012 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Eletrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Equação Diferencial.
por Higor » Seg Fev 21, 2011 13:12
- 4 Respostas
- 12206 Exibições
- Última mensagem por Higor

Seg Fev 21, 2011 14:46
Cálculo: Limites, Derivadas e Integrais
-
- Equaçao diferencial
por romulo39 » Dom Abr 03, 2011 20:58
- 1 Respostas
- 3940 Exibições
- Última mensagem por LuizAquino

Seg Abr 04, 2011 14:39
Cálculo: Limites, Derivadas e Integrais
-
- Equação diferencial - 1
por Cleyson007 » Qua Nov 07, 2012 21:09
- 8 Respostas
- 3844 Exibições
- Última mensagem por MarceloFantini

Qui Nov 08, 2012 17:05
Cálculo: Limites, Derivadas e Integrais
-
- Equação diferencial - 2
por Cleyson007 » Qua Nov 07, 2012 21:14
- 1 Respostas
- 1483 Exibições
- Última mensagem por e8group

Qua Nov 14, 2012 10:06
Cálculo: Limites, Derivadas e Integrais
-
- Equação diferencial - 3
por Cleyson007 » Qua Nov 07, 2012 21:19
- 1 Respostas
- 1366 Exibições
- Última mensagem por young_jedi

Qui Nov 08, 2012 12:33
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes
Assunto:
Funções
Autor:
Emilia - Sex Dez 03, 2010 13:24
Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.