por jacquelline » Qui Mai 17, 2012 11:04
Boa noite!
Alguem poderia me ajudar a resolver essa Equação?!

r1 = x + 2y + 1
r2 = 2x + 4y + 3
u = x + 2y + 1 --> du = dx + 2dy
2u = 2x + 4y + 2
2u + 1 = 2x + 4y + 3

(2u + 1)(du - dx) = u(2dx)
(2u + 1)du - (2u + 1)dx = 2udx
(2u + 1)du = 2udx + (2u + 1)dx
(2u + 1)du = 2udx + 2udx + dx
(2u + 1)du = 4udx + dx
(2u + 1)/(4u) du = 2dx






essa resolução esta correta?!
Ah resposta final tem que ser 2x+4y+2+ln|2x+4y+5/4| = 8x
Vou ficar no aguardo de respostas
Desde ja Agradeço

-
jacquelline
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qui Mai 17, 2012 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Eletrica
- Andamento: cursando
por LuizAquino » Sex Mai 18, 2012 19:10
jacquelline escreveu:Boa noite!
Alguem poderia me ajudar a resolver essa Equação?!

r1 = x + 2y + 1
r2 = 2x + 4y + 3
u = x + 2y + 1 --> du = dx + 2dy
2u = 2x + 4y + 2
2u + 1 = 2x + 4y + 3

(2u + 1)(du - dx) = u(2dx)
(2u + 1)du - (2u + 1)dx = 2udx
(2u + 1)du = 2udx + (2u + 1)dx
(2u + 1)du = 2udx + 2udx + dx
(2u + 1)du = 4udx + dx
(2u + 1)/(4u) du = 2dx






essa resolução esta correta?!
Ah resposta final tem que ser 2x+4y+2+ln|2x+4y+5/4| = 8x
Vou ficar no aguardo de respostas
Desde ja Agradeço

Reveja o seguinte trecho:
(2u + 1)du = 4udx + dx
(2u + 1)/(4u) du = 2dx
O correto seria:


Agora refaça o exercício a partir daí.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por jacquelline » Sáb Mai 19, 2012 20:37
Nossa que falha minha
Muito obrigada mesmo pelo ajuda... agora vai fazer um diferença muuuuito grande =D
bjok's

-
jacquelline
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qui Mai 17, 2012 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Eletrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Equação Diferencial.
por Higor » Seg Fev 21, 2011 13:12
- 4 Respostas
- 11989 Exibições
- Última mensagem por Higor

Seg Fev 21, 2011 14:46
Cálculo: Limites, Derivadas e Integrais
-
- Equaçao diferencial
por romulo39 » Dom Abr 03, 2011 20:58
- 1 Respostas
- 3808 Exibições
- Última mensagem por LuizAquino

Seg Abr 04, 2011 14:39
Cálculo: Limites, Derivadas e Integrais
-
- Equação diferencial - 1
por Cleyson007 » Qua Nov 07, 2012 21:09
- 8 Respostas
- 3587 Exibições
- Última mensagem por MarceloFantini

Qui Nov 08, 2012 17:05
Cálculo: Limites, Derivadas e Integrais
-
- Equação diferencial - 2
por Cleyson007 » Qua Nov 07, 2012 21:14
- 1 Respostas
- 1393 Exibições
- Última mensagem por e8group

Qua Nov 14, 2012 10:06
Cálculo: Limites, Derivadas e Integrais
-
- Equação diferencial - 3
por Cleyson007 » Qua Nov 07, 2012 21:19
- 1 Respostas
- 1279 Exibições
- Última mensagem por young_jedi

Qui Nov 08, 2012 12:33
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.