• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite indeterminado ? - ?

Limite indeterminado ? - ?

Mensagempor cjunior94 » Ter Mai 01, 2012 22:00

Tentei resolver esse limite, mas não conseguir, não sei se foi a mudança no limite ou erro nas derivadas, mas não consegui achar o resultado.

\lim_{x\rightarrow\infty}\sqrt[]{x^2+x}-x


Como estou estudando L'hospital, gostaria que se possível fosse resolvendo utilizando esse método.

Obrigado
cjunior94
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Dom Mar 18, 2012 11:38
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite indeterminado ? - ?

Mensagempor LuizAquino » Qua Mai 02, 2012 14:17

cjunior94 escreveu:Tentei resolver esse limite, mas não conseguir, não sei se foi a mudança no limite ou erro nas derivadas, mas não consegui achar o resultado.

\lim_{x\to +\infty}\sqrt{x^2+x}-x


Como estou estudando L'hospital, gostaria que se possível fosse resolvendo utilizando esse método.


Comece multiplicando e dividindo tudo por \sqrt{x^2+x}+x .

\lim_{x\to+\infty}\sqrt{x^2+x}-x = \lim_{x\to+\infty} \frac{\left(\sqrt{x^2+x}-x\right)\left(\sqrt{x^2+x}+x\right)}{\left(\sqrt{x^2+x}+x\right)}

= \lim_{x\to+\infty} \frac{\left(\sqrt{x^2+x}\right)^2- x^2}{\left(\sqrt{x^2+x}+x\right)}

= \lim_{x\to+\infty} \frac{x}{\sqrt{x^2+x}+x}

Agora divida o numerador e o denominador por x:

= \lim_{x\to+\infty} \frac{1}{\frac{\sqrt{x^2+x}}{x}+1}

= \lim_{x\to+\infty} \frac{1}{\sqrt{\frac{x^2+x}{x^2}}+1}

Usando as propriedades de limites, temos que:

=  \frac{1}{\sqrt{\displaystyle \lim_{x\to+\infty} \frac{x^2+x}{x^2}}+1}

Agora você pode usar a Regra de L'Hospital no limite que sobrou.

Vale lembrar que você também poderia resolver sem usar a regra de L'Hospital. Bastava continuar o desenvolvimento:

\frac{1}{\sqrt{\displaystyle \lim_{x\to+\infty} \frac{x^2+x}{x^2}}+1} = \frac{1}{\sqrt{\displaystyle \lim_{x\to+\infty} 1 + \frac{1}{x}}+1}

= \frac{1}{\sqrt{1+0}+1} = \frac{1}{2}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.