• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivadas e continuidade.

Derivadas e continuidade.

Mensagempor matematicouff » Dom Abr 29, 2012 16:07

Como posso resolver essa questão?
- Seja f(x)=-\frac{x}{2}, x<1 e f(x)=\frac{1}{\sqrt[]{x}}, x\geq1
i)f é diferenciável em x=1?
ii)f é contínua em x=1?
matematicouff
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Dom Abr 29, 2012 15:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Derivadas e continuidade.

Mensagempor LuizAquino » Ter Mai 01, 2012 14:48

matematicouff escreveu:Como posso resolver essa questão?
- Seja f(x)=-\frac{x}{2}, x<1 e f(x)=\frac{1}{\sqrt[]{x}}, x\geq1
i)f é diferenciável em x=1?
ii)f é contínua em x=1?


Temos a função:

f(x) = \begin{cases}
-\dfrac{x}{2},\; x < 1 \\ \\
\dfrac{1}{\sqrt{x}},\; x\geq 1
\end{cases}

Para que f seja diferenciável em x = 1, o limite abaixo deve existir e ser finito:

\lim_{x\to1 }\frac{f(x)-f(1)}{x - 1}

Para verificar se esse limite existe, precisamos calcular os limites laterias.

Limite pela esquerda.

\lim_{x \to 1^-}\frac{f(x)-f(1)}{x - 1} = \lim_{x \to 1^-}\frac{-\frac{x}{2} - 1}{x - 1}

= \lim_{x \to 1^-} - \frac{x+2}{2(x - 1)} = +\infty

Só pelo fato desse limite lateral ser infinito, já poderíamos dizer que f não é diferenciável em x = 1. Mas apenas para que você pratique, vejamos o cálculo do limite pela direita.

Limite pela direita.

\lim_{x \to 1^+}\frac{f(x)-f(1)}{x - 1} = \lim_{x \to 1^+}\frac{\frac{1}{\sqrt{x}} - 1}{x - 1}

= \lim_{x \to 1^+}\frac{1- \sqrt{x}}{\sqrt{x}(x - 1)}

= \lim_{x \to 1^+}\frac{\left(1- \sqrt{x}\right)\left(1 + \sqrt{x}\right)}{\sqrt{x}(x - 1)\left(1 + \sqrt{x}\right)}

= \lim_{x \to 1^+}\frac{1 - x}{\sqrt{x}(x - 1)\left(1 + \sqrt{x}\right)}

= \lim_{x \to 1^+}-\frac{1}{\sqrt{x}\left(1 + \sqrt{x}\right)} = -\frac{1}{2}

Como os limites laterais são diferentes, temos que não existe o limite \lim_{x\to 1}\frac{f(x)-f(1)}{x-1} . Como esse limite não existe, temos que a função f não é diferenciável em x = 1.

Vejamos agora se f é contínua em x = 1. Para que ela seja, devemos ter \lim_{x\to 1} f(x) = f(1) .

Vamos calcular os limites laterais.

Limite pela esquerda.

\lim_{x\to 1^-} f(x) = \lim_{x\to 1^-}  -\frac{x}{2} = -\frac{1}{2}

Limite pela direita.

\lim_{x\to 1^+} f(x) = \lim_{x\to 1^+} \frac{1}{\sqrt{x}} = 1

Como os limites laterais são diferentes, temos que não existe o limite \lim_{x\to 1} f(x) . Como esse limite não existe, já podemos dizer que a função f não é contínua em x = 1.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}