por matematicouff » Dom Abr 29, 2012 16:07
Como posso resolver essa questão?
- Seja
![f(x)=-\frac{x}{2}, x<1 e f(x)=\frac{1}{\sqrt[]{x}}, x\geq1 f(x)=-\frac{x}{2}, x<1 e f(x)=\frac{1}{\sqrt[]{x}}, x\geq1](/latexrender/pictures/faf8296cc7091fe9a4b82332694c8b43.png)
i)f é diferenciável em x=1?
ii)f é contínua em x=1?
-
matematicouff
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Dom Abr 29, 2012 15:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por LuizAquino » Ter Mai 01, 2012 14:48
matematicouff escreveu:Como posso resolver essa questão?
- Seja
![f(x)=-\frac{x}{2}, x<1 e f(x)=\frac{1}{\sqrt[]{x}}, x\geq1 f(x)=-\frac{x}{2}, x<1 e f(x)=\frac{1}{\sqrt[]{x}}, x\geq1](/latexrender/pictures/faf8296cc7091fe9a4b82332694c8b43.png)
i)f é diferenciável em x=1?
ii)f é contínua em x=1?
Temos a função:

Para que f seja diferenciável em x = 1, o limite abaixo deve existir e ser finito:

Para verificar se esse limite existe, precisamos calcular os limites laterias.
Limite pela esquerda.

Só pelo fato desse limite lateral ser infinito, já poderíamos dizer que f não é diferenciável em x = 1. Mas apenas para que você pratique, vejamos o cálculo do limite pela direita.
Limite pela direita.




Como os limites laterais são diferentes, temos que não existe o limite

. Como esse limite não existe, temos que a função f não é diferenciável em x = 1.
Vejamos agora se f é contínua em x = 1. Para que ela seja, devemos ter

.
Vamos calcular os limites laterais.
Limite pela esquerda.
Limite pela direita.
Como os limites laterais são diferentes, temos que não existe o limite

. Como esse limite não existe, já podemos dizer que a função f não é contínua em x = 1.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Continuidade, derivadas parciais
por inkz » Ter Dez 04, 2012 01:15
- 1 Respostas
- 2619 Exibições
- Última mensagem por MarceloFantini

Ter Dez 04, 2012 09:59
Cálculo: Limites, Derivadas e Integrais
-
- DERIVADAS PARCIAIS e continuidade - função é diferenciável?
por inkz » Seg Nov 26, 2012 20:37
- 3 Respostas
- 5995 Exibições
- Última mensagem por MarceloFantini

Ter Nov 27, 2012 00:01
Cálculo: Limites, Derivadas e Integrais
-
- [Derivadas] Dificuldade para calcular derivadas CDI 1
por srmai » Seg Nov 04, 2013 01:21
- 0 Respostas
- 2261 Exibições
- Última mensagem por srmai

Seg Nov 04, 2013 01:21
Cálculo: Limites, Derivadas e Integrais
-
- Continuidade
por AlbertoAM » Seg Abr 04, 2011 20:59
- 8 Respostas
- 5670 Exibições
- Última mensagem por LuizAquino

Qua Abr 06, 2011 10:33
Cálculo: Limites, Derivadas e Integrais
-
- Continuidade
por guilherme5088 » Sáb Out 12, 2019 15:31
- 1 Respostas
- 5327 Exibições
- Última mensagem por adauto martins

Ter Out 15, 2019 23:11
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.