por raulalves_ » Qua Abr 18, 2012 01:49
Não estou conseguindo realizar essa integral

, poderiam me ajudar?
Obrigado desde já!
Raul Oliveira Alves
-
raulalves_
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qua Abr 18, 2012 01:33
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Geologia
- Andamento: cursando
por LuizAquino » Qui Abr 19, 2012 14:59
raulalves_ escreveu:Não estou conseguindo realizar essa integral

, poderiam me ajudar?
Não há solução analítica dessa integral em termos de funções elementares. O resultado dela ficará dependente da chamada
Função Erro.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Integral com exponencial
por suziquim » Ter Mai 10, 2011 18:07
- 2 Respostas
- 3223 Exibições
- Última mensagem por suziquim

Qua Mai 11, 2011 11:08
Cálculo: Limites, Derivadas e Integrais
-
- (integral) função exponencial
por manuel_pato1 » Sex Dez 07, 2012 20:08
- 6 Respostas
- 3850 Exibições
- Última mensagem por manuel_pato1

Sáb Dez 08, 2012 15:02
Cálculo: Limites, Derivadas e Integrais
-
- [dúvida] integral exponencial Ei(z)?
por Jasbinschek » Qua Mai 29, 2013 01:17
- 2 Respostas
- 1871 Exibições
- Última mensagem por Jasbinschek

Qua Mai 29, 2013 20:11
Cálculo: Limites, Derivadas e Integrais
-
- integral de função exponencial
por vivima » Sex Mai 09, 2014 13:36
- 2 Respostas
- 2007 Exibições
- Última mensagem por vivima

Sex Mai 09, 2014 15:19
Cálculo: Limites, Derivadas e Integrais
-
- [calculo] integral definida com exponencial
por beel » Dom Nov 20, 2011 22:38
- 3 Respostas
- 2918 Exibições
- Última mensagem por LuizAquino

Ter Nov 22, 2011 16:55
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 14 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.