• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Determinar a função

Determinar a função

Mensagempor yonara » Ter Jun 30, 2009 20:19

Pessoal, esta questão está no meu trabalho, quero pedir a ajuda de vcs, pq me desculpem, mas eu não sei nem começar a fazer... :oops:

Determine todos os pontos onde a função f(x) = \frac{4x}{1+{x}^{2}} possui extremo relativo e esboce o seu gráfico.
yonara
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Ter Jun 30, 2009 18:45
Formação Escolar: GRADUAÇÃO
Área/Curso: medicina veterinária
Andamento: cursando

Re: Determinar a função

Mensagempor Felipe Schucman » Seg Ago 03, 2009 21:15

Para derivar essa função precisamos usar a formula de derivação de um quociente (f(x)/g(x) )?= (f?(x)g(x) ? f(x)g?(x))/g(x)^2

yonara escreveu:Pessoal, esta questão está no meu trabalho, quero pedir a ajuda de vcs, pq me desculpem, mas eu não sei nem começar a fazer... :oops:

Determine todos os pontos onde a função f(x) = \frac{4x}{1+{x}^{2}} possui extremo relativo e esboce o seu gráfico.


Assim aplicando a formula fica assim f(x) = \frac{4x}{1+{x}^{2}} ----> f´(x)= (4*(1+x^2) ? 4x*2x)/ (1+x^2)^2. Simplificando essa expressão e igualando a zero você tera os pontos criticos falta testar se são maximo e minimos(pois podem ser pontos de inflexão apenas) e se estão dentro do dominio, e pronto você tera a resposta!

Um abraço!
Felipe Schucman
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 52
Registrado em: Ter Jul 28, 2009 17:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia e Direito
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}