• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivadas, Limites

Derivadas, Limites

Mensagempor Grasi » Qui Jun 25, 2009 00:15

Quais são as dimensões do retângulo de menor perímetro que tem área de 1 ha?

Já tentei encontrar a solução em 3 livros q tenho, mas os exemplos e teorias não estão me ajudando.

Peço a gentileza para ajudar-me, agradeço dede já. Muito obrigada!
Grasi
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qua Jun 24, 2009 23:55
Formação Escolar: GRADUAÇÃO
Área/Curso: Química
Andamento: cursando

Re: Derivadas, Limites

Mensagempor Molina » Qui Jun 25, 2009 11:30

Grasi escreveu:Quais são as dimensões do retângulo de menor perímetro que tem área de 1 ha?

Já tentei encontrar a solução em 3 livros q tenho, mas os exemplos e teorias não estão me ajudando.

Peço a gentileza para ajudar-me, agradeço dede já. Muito obrigada!


Área do retângulo é dado por A=b*h, logo, A=b*h=1

Perímetro do retângulo é dado por P=2(b+h)

b*h=1 \Rightarrow b=\frac{1}{h}, substituindo na fórmula do perímetro: P=2(\frac{1}{h}+h) \Rightarrow P=2(\frac{1+h^2}{h}) \Rightarrow P=\frac{2+2h^2}{h}

Devemos encontrar o mínimo desta função:

P'=\frac{2h^2-2}{h^2}=0 \Rightarrow h=\sqrt{1} \Rightarrow h=1 (ponto de mínimo local)

Pelo teste da segunda deirvada temos que P'' > 0, \forall h>0, logo o gráfico de P é côncavo para cima e o ponto de mínimo local deve ser também o mínimo absoluto.

Conclusão: A altura ideal é h=1, logo, se o retângulo tem área igual a 1, a base também deve ser igual a 1 (b=1).

Bom estudo, :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: