por souzalucasr » Qui Abr 05, 2012 11:36
Olá pessoal,
Fiz uma prova ontem e fiquei em dúvida na seguinte questão:
Calcule o limite a seguir:
![\lim_{x\rightarrow0}\frac{\sqrt[3]{x}-1}{x^2-x} \lim_{x\rightarrow0}\frac{\sqrt[3]{x}-1}{x^2-x}](/latexrender/pictures/ca45b28898898b7f78ed8763982cd50b.png)
Utilizei a equivalência

, de forma a obter

=

=

cancelando os termos

no denominador e numerador, obtive

Foi exatamente nesse ponto em que "travei". Ao entregar a prova, perguntei ao professor como poderia resolver e ele me disse que seria pela análise do sinal, mas não sei bem o que isso quer dizer e como fazer. Vocês poderiam me ajudar?
Muito obrigado!
Essa é minha primeira postagem aqui
-
souzalucasr
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Qui Abr 05, 2012 11:21
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado em Economia
- Andamento: cursando
por MarceloFantini » Qui Abr 05, 2012 12:30
O limite é com

mesmo? Se já viram limites infinitos, a resposta sai de cara da primeira linha, pois o numerador tende a menos um e o denominador para zero.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por souzalucasr » Qui Abr 05, 2012 13:01
Eu não estou com a prova em mãos, mas tenho 99% de certeza que é x tendendo a 0, pois houve esse comentário do professor quanto ao "estudo do sinal". Eu faltei a essa aula, por isso estou perdido. Além disso, não encontrei nada no livro. Segunda-feira vou só confirmar se é isso mesmo, mas até lá vou tentando resolver.
Obrigado!
-
souzalucasr
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Qui Abr 05, 2012 11:21
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado em Economia
- Andamento: cursando
por LuizAquino » Qui Abr 05, 2012 19:11
souzalucasr escreveu:Calcule o limite a seguir:
![\lim_{x\rightarrow0}\frac{\sqrt[3]{x}-1}{x^2-x} \lim_{x\rightarrow0}\frac{\sqrt[3]{x}-1}{x^2-x}](/latexrender/pictures/ca45b28898898b7f78ed8763982cd50b.png)
souzalucasr escreveu:Utilizei a equivalência

, de forma a obter

=

=

cancelando os termos

no denominador e numerador, obtive

Foi exatamente nesse ponto em que "travei". Ao entregar a prova, perguntei ao professor como poderia resolver e ele me disse que seria pela análise do sinal, mas não sei bem o que isso quer dizer e como fazer. Vocês poderiam me ajudar?
A dica sobre a "análise do sinal" é devido ao fato desse limite ter como resultado

.
Como já disse o colega
MarceloFantini, analisando a expressão original do limite, note que o numerador tende para -1 e o denominador para 0. Isso já é um indício que temos um limite cujo o resultado é

. Falta agora saber se é

ou

. Para saber disso precisamos analisar o sinal.
Para x próximo de 0, temos que o numerador é negativo (como já vimos, ele tende para -1).
Precisamos agora analisar o sinal do denominador quando x está próximo de 0. Isso significa que precisamos analisar o sinal da função

quando x está próximo de zero. Fazendo o estudo do sinal dessa função polinomial do segundo grau, percebemos que f(x) tende para 0 por valores positivos, quando x tende a 0 pela esquerda. Por outro lado, f(x) tende para 0 por valores negativos, quando x tende a 0 pela direita.
Em resumo:
(i) quando x tende a 0 pela esquerda, o numerador é negativo e o denominador é positivo;
(ii) quando x tende a 0 pela direita, o numerador é negativo e o denominador é negativo;
Conclusão:
![\lim_{x\to 0^-} \frac{\sqrt[3]{x} - 1}{x^2 - x} = -\infty \lim_{x\to 0^-} \frac{\sqrt[3]{x} - 1}{x^2 - x} = -\infty](/latexrender/pictures/cd763d09f9c46589bb78e54b5bf3d3db.png)
![\lim_{x\to 0^+} \frac{\sqrt[3]{x} - 1}{x^2 - x} = +\infty \lim_{x\to 0^+} \frac{\sqrt[3]{x} - 1}{x^2 - x} = +\infty](/latexrender/pictures/ca23a7c9df3111da51374883cda55923.png)
Como esses limites laterais são diferentes, temos que
não existe o limite
![\lim_{x\to 0} \frac{\sqrt[3]{x} - 1}{x^2 - x} \lim_{x\to 0} \frac{\sqrt[3]{x} - 1}{x^2 - x}](/latexrender/pictures/ea17b159bfcabc8a50c0338778963f42.png)
.
souzalucasr escreveu:Eu não estou com a prova em mãos, mas tenho 99% de certeza que é x tendendo a 0, pois houve esse comentário do professor quanto ao "estudo do sinal". Eu faltei a essa aula, por isso estou perdido. Além disso, não encontrei nada no livro.
Eu gostaria de recomendar que você assista a videoaula "05. Cálculo I - Limites Infinitos". Ela está disponível em meu canal no YouTube:
http://www.youtube.com/LCMAquino
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por souzalucasr » Sex Abr 06, 2012 11:50
Muito obrigado, Luiz e Marcelo!
Entendi perfeitamente agora. As aulas do youtube serão muito úteis. Vou continuar resolvendo o máximo de exercícios que puder e, quando tiver alguma dúvida, posto aqui para tentar aprender um pouco mais.
[]s
-
souzalucasr
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Qui Abr 05, 2012 11:21
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado em Economia
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- derivada análise de sinal
por JoaoLuiz07 » Seg Fev 08, 2016 16:26
- 1 Respostas
- 1321 Exibições
- Última mensagem por adauto martins

Qua Fev 10, 2016 12:31
Cálculo: Limites, Derivadas e Integrais
-
- limite com sinal infinito
por SILMARAKNETSCH » Sex Nov 09, 2012 16:05
- 4 Respostas
- 2369 Exibições
- Última mensagem por MarceloFantini

Seg Nov 12, 2012 10:57
Cálculo: Limites, Derivadas e Integrais
-
- Empacada por um sinal
por Fernanda Lauton » Sex Jul 02, 2010 10:08
- 5 Respostas
- 2654 Exibições
- Última mensagem por Fernanda Lauton

Sáb Jul 03, 2010 22:28
Logaritmos
-
- Estudo do sinal
por victorleme » Dom Mai 08, 2011 16:33
- 1 Respostas
- 2916 Exibições
- Última mensagem por Molina

Dom Mai 08, 2011 17:08
Polinômios
-
- Função ( Estudo do sinal )
por clara » Dom Jun 21, 2009 20:55
- 1 Respostas
- 5314 Exibições
- Última mensagem por Molina

Seg Jun 22, 2009 12:57
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.