• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Como resolver limite exponencial

Como resolver limite exponencial

Mensagempor joaofonseca » Sex Mar 30, 2012 12:59

Seja este limite:

\lim_{x \to 2}\left(\frac{e^{x-2}-1}{x^3-3x^2+x+2}\right)

Já tentei mudar a variável:

y=x-2, deste modo quando x \to 2, y \to 0. Mas não consegui chegar ao limite especial, que a expressão sugere.

Que alteração de variável tenho de fazer?

Obrigado
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Como resolver limite exponencial

Mensagempor Fabio Wanderley » Sex Mar 30, 2012 15:26

Eu tentei o seguinte:

Fazendo:
j = {e}^{x-2}-1
x \to 2 \Rightarrow j \to 0

Isolando a variável x para aplicá-la no limite:

j + 1 = {e}^{x-2}
ln(j+1) = ln {e}^{x-2}
ln(j+1) = x-2
x = ln(j+1)+2

Desenvolvendo o limite:

\lim_{x \to 2}\left(\frac{e^{x-2}-1}{x^3-3x^2+x+2}\right)

\lim_{x \to 2}\left(\frac{e^{x-2}-1}{(x-2)(x^2-x-1)}\right)

\lim_{j \to 0}\left(\frac{j}{[ln(j+1)+2-2].([ln(j+1)+2]^2-[ln(j+1)+2]-1)}\right)

\lim_{j \to 0}{\left(\frac{[ln(j+1)].([ln(j+1)+2]^2-[ln(j+1)+2]-1)}{j}\right)}^{-1}

Passando o limite "para dentro" (é permitido haja vista que a função é contínua):

{\left(\lim_{j \to 0}\frac{1}{j}.ln(j+1).\lim_{j \to 0}([ln(j+1)+2]^2-[ln(j+1)+2]-1)\right)}^{-1}

{\left(\lim_{j \to 0}{ln(j+1)}^{\frac{1}{j}}.\lim_{j \to 0}([ln(j+1)+2]^2-[ln(j+1)+2]-1)\right)}^{-1}

A função ln é contínua em todo ponto de seu domínio:

{\left(ln\left(\lim_{j \to 0}{(j+1)}^{\frac{1}{j}}\right).\lim_{j \to 0}([ln(j+1)+2]^2-[ln(j+1)+2]-1)\right)}^{-1}

{\left(ln\left(e\right).([ln(0+1)+2]^2-[ln(0+1)+2]-1)\right)}^{-1}

{(1.([0+2]^2-[0+2]-1))}^{-1}

{(1)}^{-1}

1

Agora aguardo a correção!
Avatar do usuário
Fabio Wanderley
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Sex Mar 23, 2012 12:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatística
Andamento: cursando

Re: Como resolver limite exponencial

Mensagempor joaofonseca » Sáb Mar 31, 2012 11:15

Obrigado pela ajuda
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.