por JessyBr » Qui Mar 29, 2012 00:46
Amanha tenho prova de elementos de calculo e não estou conseguindo resolver alguns exercícios da revisão!
Sei calcular a maxima e minima de f(x) e usar os testes de derivada mas o mais simples como obter as raizes da função eu nao consigo!
a questão:
1. Determine os intervalos em que f(x) é crescente e decrescente, os valores de máximo e mínimo relativos de f(x), os intervalos de concavidade, os pontos de inflexão e o gráfico de f(x) utilizando os testes da 1a e da 2a derivada:

Eu queria ajuda para determinar os intervalos de f(x), mas por favor coloquem a evolucao dos calculos pois não sei fazê-los!
Obrigadaa

-
JessyBr
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qui Mar 29, 2012 00:32
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: arquitetura
- Andamento: cursando
por MarceloFantini » Qui Mar 29, 2012 10:50
Mostre o seu desenvolvimento para que possamos identificar onde você está tendo problemas. Assim, entenderá seus possíveis erros e aprenderá melhor.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por LuizAquino » Qui Mar 29, 2012 12:41
JessyBr escreveu:Sei calcular a maxima e minima de f(x) e usar os testes de derivada mas o mais simples como obter as raizes da função eu nao consigo!
a questão:
1. Determine os intervalos em que f(x) é crescente e decrescente, os valores de máximo e mínimo relativos de f(x), os intervalos de concavidade, os pontos de inflexão e o gráfico de f(x) utilizando os testes da 1a e da 2a derivada:


Em ambos os casos, você vai precisar determinar as raízes da equação:

.
Para a primeira função do exercício, após derivar você terá que resolver uma equação polinomial do primeiro grau. Já para a segunda função, após derivar você terá que resolver uma equação polinomial do segundo grau.
Para saber como resolver esses tipos de equação, eu recomendo que você assista as videoaulas "Matemática Zero - Aula 13 - Equação do Primeiro Grau" e "Matemática Zero - Aula 14 - Equação do Segundo Grau". Elas estão disponíveis no canal do Nerckie no YouTube:
http://www.youtube.com/nerckieApós assistir essas videoaulas tente resolver o exercício. Caso ainda tenha dúvidas, mostre o seu desenvolvimento assim como já sugeriu o colega
MarceloFantini.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Calcular intervalos de crescimento e decrescimento da função
por Eduardooitavo » Sáb Jun 09, 2012 18:06
- 1 Respostas
- 2432 Exibições
- Última mensagem por MarceloFantini

Sáb Jun 09, 2012 19:32
Cálculo: Limites, Derivadas e Integrais
-
- [Derivadas] Dificuldade para calcular derivadas CDI 1
por srmai » Seg Nov 04, 2013 01:21
- 0 Respostas
- 2164 Exibições
- Última mensagem por srmai

Seg Nov 04, 2013 01:21
Cálculo: Limites, Derivadas e Integrais
-
- [Derivadas] como calcular
por ma-mine » Sáb Jul 13, 2013 15:24
- 3 Respostas
- 2349 Exibições
- Última mensagem por e8group

Dom Jul 14, 2013 19:00
Cálculo: Limites, Derivadas e Integrais
-
- [Derivadas] como calcular
por ghiza » Dom Jul 14, 2013 21:45
- 2 Respostas
- 1657 Exibições
- Última mensagem por Man Utd

Dom Jul 14, 2013 23:39
Cálculo: Limites, Derivadas e Integrais
-
- Como calcular derivadas com a constante "e"
por fer_carnie » Seg Jun 20, 2011 20:40
- 1 Respostas
- 1959 Exibições
- Última mensagem por Fabio Cabral

Seg Jun 20, 2011 22:22
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.