• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvida em continuidade

Dúvida em continuidade

Mensagempor MirroR » Dom Mar 18, 2012 18:16

Boa tarde. Eu estou cursando o primeiro período do curso de Engenharia, estou utilizando o livro "Um curso de Cálculo, volume 1" pelo Hamilton Luiz Guidorizzi para estudar Cálculo 1.
Nos meus estudos, eu encontrei um problema que não consigo desenvolver

Dado uma função [f(x)=1 + 1/x] precisa-se provar que ela é contínua em p=1.

Eu já tentei várias vezes utilizar da definição elementar de continuidade |f(x)-f(p)|< \epsilon \Rightarrow|x-p|< \delta para provar que a função é contínua em p=1, mas no decorrer eu não consigo associar o \epsilon ao \delta. Inclusive, já estou mais avançado no assunto e por outros métodos eu conseguiria provar que a função é contínua, porém é requerido o uso da definição de continuidade.

Por gentileza, ajudem-me a chegar à um resultado.
MirroR
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Mar 18, 2012 18:00
Localização: Recife
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Dúvida em continuidade

Mensagempor LuizAquino » Dom Mar 18, 2012 21:38

MirroR escreveu:Dado uma função [f(x)=1 + 1/x] precisa-se provar que ela é contínua em p=1.

Eu já tentei várias vezes utilizar da definição elementar de continuidade |f(x)-f(p)|< \epsilon \Rightarrow|x-p|< \delta para provar que a função é contínua em p=1, mas no decorrer eu não consigo associar o \epsilon ao \delta. Inclusive, já estou mais avançado no assunto e por outros métodos eu conseguiria provar que a função é contínua, porém é requerido o uso da definição de continuidade.


Se f é contínua em x = p, então lembre-se que você precisa provar que:

Para todo \varepsilon > 0 dado, existe \delta > 0 tal que:

|x - p| < \delta \Rightarrow |f(x) - f(p)| < \varepsilon

Note que você escreveu ao contrário:

MirroR escreveu:|f(x)-f(p)|< \epsilon \Rightarrow|x-p|< \delta


Vejamos agora o desenvolvimento. Note que:

\left|f(x) - f(1)\right| < \varepsilon

\left|\left(1 + \dfrac{1}{x}\right) - \left(1 + \dfrac{1}{1}\right)\right| < \varepsilon

\left|\dfrac{1}{x} - 1\right| < \varepsilon

\left|\dfrac{1 - x}{x}\right| < \varepsilon

\left|\dfrac{-(-1 + x)}{x}\right| < \varepsilon

\left|\dfrac{-1}{x}\right||x - 1| < \varepsilon

\dfrac{1}{|x|}|x - 1| < \varepsilon

Precisamos agora determinar uma constante c tal que \frac{1}{|x|} < c .

Como x está próximo de 1, é razoável dizer que 1- \frac{1}{2} < x < 1 + \frac{1}{2} . Ou seja, temos que |x - 1|< \frac{1}{2} . Note que com isso já estamos escolhendo um valor \delta_1 = \frac{1}{2} .

Além disso, também podemos dizer que \frac{1}{2} < x < \frac{3}{2} . Ou seja, temos \frac{2}{3} < \frac{1}{|x|} < 2 . Desse modo, temos que:

\dfrac{1}{|x|}|x - 1| < 2|x - 1|

Note que se fizermos |x-1| < \frac{\varepsilon}{2} (o que significa que estamos escolhendo um \delta_2 = \frac{\varepsilon}{2}), temos que:

\dfrac{1}{|x|}|x - 1| < 2\frac{\varepsilon}{2}

\dfrac{1}{|x|}|x - 1| < \varepsilon

Como temos dois valores para delta (\delta_1 e \delta_2), devemos tomar o menor deles para garantir que ao mesmo tempo ocorra as duas inequações: |x-1| < \frac{1}{2} e |x-1| < \frac{\varepsilon}{2} .

Isto é, vamos tomar \delta = \min \left\{\dfrac{1}{2},\, \frac{\varepsilon}{2}\right\} .

Agora vamos verificar que essa escolha de \delta funciona.

Se \delta = \min \left\{\dfrac{1}{2},\, \frac{\varepsilon}{2}\right\} , então temos que:

|x - 1| < \delta \Rightarrow \begin{cases} |x - 1| < \dfrac{1}{2} \\ \\ |x - 1| < \dfrac{\varepsilon}{2}\end{cases}

Já havíamos determinado que |x - 1| < \frac{1}{2} \Rightarrow \frac{2}{3} < \frac{1}{|x|} < 2 . Sendo assim, podemos dizer que:

|x - 1| < \delta \Rightarrow \begin{cases} \dfrac{1}{|x|} < 2 \\ \\ |x - 1| < \dfrac{\varepsilon}{2}\end{cases}

Multiplicando membro a membro as duas inequações que aparecem depois da implicação, temos que:

|x - 1| < \delta \Rightarrow  \dfrac{1}{|x|}|x - 1| < 2\dfrac{\varepsilon}{2}

|x - 1| < \delta \Rightarrow  \left|\dfrac{x - 1}{x}\right| < \varepsilon

|x - 1| < \delta \Rightarrow  \left|\dfrac{-(1 - x)}{x}\right| < \varepsilon

|x - 1| < \delta \Rightarrow  |-1|\left|\dfrac{1 - x}{x}\right| < \varepsilon

|x - 1| < \delta \Rightarrow  \left|\dfrac{1}{x} - 1\right| < \varepsilon

|x - 1| < \delta \Rightarrow  \left|\left(1 + \dfrac{1}{x}\right) - \left(1 + \frac{1}{1}\right) \right| < \varepsilon

|x - 1| < \delta \Rightarrow  \left|f(x) - f(1) \right| < \varepsilon
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D