• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral - explicação da resolução

Integral - explicação da resolução

Mensagempor dina ribeiro » Qui Mar 15, 2012 21:20

Boa noite!
Gostaria de entender como foi resolvida essa integral . (Essa resolução é do livro)
\int_{}^{}1/({3x+1})^{2}dx
= 1/3\int_{}^{}1/{u}^{2}du
com [u=3x+1 , du=3 dx]
Não consigo enxergar a constante 1/3 que saiu da integral

= -1/3u + C
=-1/[3*(3x+1)] + C

Grata
dina ribeiro
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Qui Mar 15, 2012 19:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Integral - explicação da resolução

Mensagempor fraol » Qui Mar 15, 2012 21:31

Veja que você pode escrever

\int  \frac{1}{({3x+1})^{2}}dx da seguinte forma:

\int  \frac{1}{({3x+1})^{2}} \frac{3}{3} dx , pois \frac{3}{3} = 1. Então podemos prosseguir assim:

\int  \frac{1}{3}  \frac{1}{({3x+1})^{2}} {3} dx e, por fim, assim:

\frac{1}{3}  \int  \frac{1}{({3x+1})^{2}} {3} dx

Agora é aplicar a substituição sugerida pelo livro.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Integral - explicação da resolução

Mensagempor dina ribeiro » Qui Mar 15, 2012 21:53

fraol escreveu:Veja que você pode escrever

\int  \frac{1}{({3x+1})^{2}}dx da seguinte forma:

\int  \frac{1}{({3x+1})^{2}} \frac{3}{3} dx , pois \frac{3}{3} = 1. Então podemos prosseguir assim:

\int  \frac{1}{3}  \frac{1}{({3x+1})^{2}} {3} dx e, por fim, assim:

\frac{1}{3}  \int  \frac{1}{({3x+1})^{2}} {3} dx

Agora é aplicar a substituição sugerida pelo livro.



Obrigada!!!
dina ribeiro
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Qui Mar 15, 2012 19:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Integral - explicação da resolução

Mensagempor dina ribeiro » Qui Mar 15, 2012 22:25

Gostaria de entender essa regra: u = 3x+1

Em uma das tentativas em resolver a integral usei : \int_{}^{}u*dv = u*v - \int_{}^{} v *du
sendo u=\frac{1}{(3x+1)}{}^{2} e dv= dx

E em outra tentativa simplemente a integral deu ln (3x+1)².

E possível que me explique passo a passo como foi feito a respota do livro.

Grata
dina ribeiro
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Qui Mar 15, 2012 19:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Integral - explicação da resolução

Mensagempor fraol » Qui Mar 15, 2012 23:24

fraol escreveu:Veja que você pode escrever

\int  \frac{1}{({3x+1})^{2}}dx da seguinte forma:

\int  \frac{1}{({3x+1})^{2}} \frac{3}{3} dx , pois \frac{3}{3} = 1. Então podemos prosseguir assim:

\int  \frac{1}{3}  \frac{1}{({3x+1})^{2}} {3} dx e, por fim, assim:

\frac{1}{3}  \int  \frac{1}{({3x+1})^{2}} {3} dx

Agora é aplicar a substituição sugerida pelo livro.


Assim vamos continuar:

Se você fizer a substituição sugerida: u = 3x + 1 então derivando essa expressão em relação a x você tem:

u = 3x + 1 => \frac{du}{dx} = 3 \iff du = 3 dx .

Voltando na integral que desenvolvemos e fazendo a substituição:

\frac{1}{3}  \int  \frac{1}{({3x+1})^{2}} {3} dx = \frac{1}{3}  \int  \frac{1}{(u)^{2}} du

Agora é o momento de desenvolver a integral de \frac{1}{u^2} que é igual a - \frac{1}{u} .

Assim \frac{1}{3}  \int  \frac{1}{(u)^{2}} du = \frac{1}{3} \left ( - \frac{1}{u} \right ) + C .

Agora é desfazer a substituição de u e você terá a expressão do livro.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.