• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[calculo] integral por substituiçao trigonometrica 2

[calculo] integral por substituiçao trigonometrica 2

Mensagempor beel » Dom Nov 27, 2011 18:06

nessa integral
\int_{}^{}\frac{(1-r^2)^5^/^2}{r^3}dr
fiz r=sen\theta dr=cos\thetad\theta
...
\int_{}^{}\frac{cos^6\theta d\theta}{sen^3\theta},
mas ai travei...
tentei resolver mas deu um resultado estranho
\sqrt[]{lnx}+k= \sqrt[]{lnsen \theta}+k
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [calculo] integral por substituiçao trigonometrica 2

Mensagempor LuizAquino » Ter Nov 29, 2011 15:11

beel escreveu:nessa integral
\int \frac{(1-r^2)^5^/^2}{r^3}dr
fiz r=sen\theta dr=cos\thetad\theta
...
\int\frac{cos^6\theta d\theta}{sen^3\theta},
mas ai travei...
tentei resolver mas deu um resultado estranho
\sqrt[]{lnx}+k= \sqrt[]{lnsen \theta}+k


Note que:

\int \frac{\cos^6\theta}{\textrm{sen}^3\,\theta} \, d\theta = \int \frac{\left(1-\,\textrm{sen}^2\,\theta\right)^3}{\textrm{sen}^3\,\theta} \, d\theta

= \int \frac{1 - 3\,\textrm{sen}^2\,\theta + 3\,\textrm{sen}^4\,\theta -\,\textrm{sen}^6\,\theta}{\textrm{sen}^3\,\theta} \, d\theta

= \int \frac{1}{\textrm{sen}^3\,\theta} - \frac{3}{\textrm{sen}\,\theta} + 3\,\textrm{sen}\,\theta - \,\textrm{sen}^3\,\theta \, d\theta

= \int \frac{1}{\textrm{sen}^3\,\theta} \, d\theta - 3 \int \frac{1}{\textrm{sen}\,\theta} \, d\theta + 3 \int \,\textrm{sen}\,\theta \, d\theta - \int \,\textrm{sen}^3\,\theta \, d\theta

Agora basta resolver cada uma das integrais.

Lembre-se que para conferir a sua reposta você pode usar o procedimento que já foi lhe indicado em suas mensagens anteriores.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: