• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[LIMITES] Me ajudem

[LIMITES] Me ajudem

Mensagempor carvalhothg » Qua Nov 16, 2011 16:52

Como faço para resolver este limite, alguém pode me ajudar?


\lim_{x\rightarrow\infty}\left(\frac{1}{{x}^{2}} +\frac{2}{{x}^{2}} + \frac{3}{{x}^{2}}+...+\frac{x-1}{{x}^{2}} \right)
carvalhothg
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 42
Registrado em: Dom Set 04, 2011 18:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [LIMITES] Me ajudem

Mensagempor Neperiano » Qua Nov 16, 2011 17:47

Ola

Note que ele começa em 0 e vai se aproximando para outro número

A questão é resolver o ultimo termo ai, tenque dar um jeiro de resolver, porque se deixar assim ficara 0/infinito, que é indeterminação, talvez passe o x^2 para cima

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: [LIMITES] Me ajudem

Mensagempor LuizAquino » Qua Nov 16, 2011 19:26

carvalhothg escreveu:Como faço para resolver este limite, alguém pode me ajudar?


\lim_{x\to\infty}\left(\frac{1}{{x}^{2}} +\frac{2}{{x}^{2}} + \frac{3}{{x}^{2}}+\cdots+\frac{x-1}{{x}^{2}} \right)


Note que:

\lim_{x\to\infty}\left(\frac{1}{{x}^{2}} +\frac{2}{{x}^{2}} + \frac{3}{{x}^{2}}+\cdots+\frac{x-1}{{x}^{2}} \right)

\lim_{x\to\infty} \frac{1+2+3+\cdots+(x-1)}{x^2}

No numerador há a soma dos x - 1 termos de uma p. a. de razão 1, primeiro termo 1 e último termo x - 1. Sendo assim, temos que:

\lim_{x\to\infty} \frac{\frac{[1 + (x-1)](x-1)}{2}}{x^2}

\lim_{x\to\infty} \frac{[1 + (x-1)](x-1)}{2x^2}

Agora tente terminar o exercício.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: