por manolo223 » Seg Nov 14, 2011 14:37
mostrar que a equaçao cos(y)y'+2xsen(y)=-2x pode ser transformada numa equaçao linear e resolver o PVI y(0)=0
eu tentei fazer o seguinte:
chamar de k=sen(y)
derivar k em funçao de y , dk/dy = cos(y)
(dk/dy).y' + 2xk = -2x
(dk/dy).(dy/dx) + 2xk = -2x <=> dk/dx + 2xk = -2x => k' + 2xk = -2x
nao sei se poderia fazer isso , mas caso fosse possivel como faria com respeito ao y(0)=0 nao tenho valor de z para jogar na equaçao depois de aplicar a regra. alguem tem uma ideia de como resolver?
-
manolo223
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Dom Nov 13, 2011 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: física/engenharia
- Andamento: cursando
por MarceloFantini » Seg Nov 14, 2011 19:12
Não me lembro muito de EDO, mas não seria possível usar a transformada de Laplace?
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por LuizAquino » Seg Nov 14, 2011 20:29
manolo223 escreveu:chamar de k=sen(y)
A variável y está em função de x. Temos então que
k também está em função de x.
manolo223 escreveu:como faria com respeito ao y(0)=0
Note que:

.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por manolo223 » Ter Nov 15, 2011 00:45
falta de atenção minha, percebi isso pouco depois de fazer a pergunta . Obrigado pelo exclarecimento
-
manolo223
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Dom Nov 13, 2011 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: física/engenharia
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Problema
por fabio muniz » Qui Out 23, 2008 16:14
- 1 Respostas
- 10718 Exibições
- Última mensagem por admin

Ter Out 28, 2008 17:47
Problemas do Cotidiano
-
- Problema
por Lima » Dom Dez 14, 2008 18:08
- 3 Respostas
- 9730 Exibições
- Última mensagem por blangis

Dom Dez 14, 2008 20:15
Sistemas de Equações
-
- Problema..
por ANDRE RENATO PROFETA » Sex Mar 13, 2009 00:36
- 1 Respostas
- 3315 Exibições
- Última mensagem por Molina

Sex Mar 13, 2009 14:58
Álgebra Elementar
-
- Problema
por ginrj » Qua Jun 03, 2009 19:19
- 3 Respostas
- 4609 Exibições
- Última mensagem por Cleyson007

Dom Jun 07, 2009 11:48
Álgebra Elementar
-
- Problema. . .
por Fernanda90 » Qui Ago 27, 2009 20:36
- 3 Respostas
- 6531 Exibições
- Última mensagem por Elcioschin

Qui Ago 27, 2009 22:27
Estatística
Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.