• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivada] Lucro Máximo

[Derivada] Lucro Máximo

Mensagempor esquilowww » Ter Nov 08, 2011 20:00

Olá pessoal, gostaria novamente de agradecer pela ajuda nos tópicos anteriores.

Hoje trago 2 questões para determinação do lucro máximo, a primeira:

1) Uma certa indústria vende seu produto por R$ 100,00 a unidade. Se o custo da produção total diária, em R$, para x unidades for C(x) = 0,0025x² + 50x + 100.000 e se a capacidade de produção mensal for, de no máximo, 15000 unidades, quantas unidades desse produto devem ser fabricadas e vendidas mensalmente para que o lucro seja máximo?

Eu conseguir resolve-lá considerando venda = 100x e C(x). Logo L(x) 100x - C(x)

Para obter lucro máximo L'(x) = 0 e L"(x) < 0

Derivei a função L e encontrei o resultado de 10.000 unidades. Gostaria de saber se fiz corretamente.

Já a segunda questão tentei resolver pelo mesmo método porém não obtive exito.

2) Uma empresa opera num mercado em que o preço de venda é constante e igual a $20. seu custo marginal mensal é dado por 3x2 – 6x + 15 qual a produção que dá o máximo lucro. (a própria questão veio com 3x2, porém acredito que seja 3x²)

Gostaria de uma ajuda para resolve-lá.

Desde já agradeço.
esquilowww
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sex Out 14, 2011 23:22
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração/Ciências Contábeis
Andamento: cursando

Re: [Derivada] Lucro Máximo

Mensagempor LuizAquino » Qui Nov 10, 2011 11:41

esquilowww escreveu:1) Uma certa indústria vende seu produto por R$ 100,00 a unidade. Se o custo da produção total diária, em R$, para x unidades for C(x) = 0,0025x² + 50x + 100.000 e se a capacidade de produção mensal for, de no máximo, 15000 unidades, quantas unidades desse produto devem ser fabricadas e vendidas mensalmente para que o lucro seja máximo?


esquilowww escreveu:Para obter lucro máximo L'(x) = 0 e L"(x) < 0

Derivei a função L e encontrei o resultado de 10.000 unidades. Gostaria de saber se fiz corretamente.


Ok.

esquilowww escreveu:2) Uma empresa opera num mercado em que o preço de venda é constante e igual a $20. seu custo marginal mensal é dado por 3x2 – 6x + 15 qual a produção que dá o máximo lucro. (a própria questão veio com 3x2, porém acredito que seja 3x²)


esquilowww escreveu:Já a segunda questão tentei resolver pelo mesmo método porém não obtive exito.


Provavelmente você esqueceu de um detalhe: por definição o custo marginal é equivalente a derivada do custo. Ou seja, se C(x) é o custo, então pelos dados do exercício o custo marginal será C^\prime(x) = 3x^2 - 6x + 15 .

Isso significa que o custo C(x) deve ser algo como C(x)=x^3 - 3x^2 + 15x + k (onde k é uma constante qualquer).

Supondo que para produzir 0 unidades não haverá custo, devemos ter que C(0)=0. Sendo assim, chegamos a conclusão que a constante k deve ser nula.

Em resumo: para que o custo marginal seja igual ao que foi dado no exercício e supondo C(0)=0, precisamos que o custo seja dado por C(x)=x^3 - 3x^2 + 15x .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?