• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Gradiente de função de três variáveis]

[Gradiente de função de três variáveis]

Mensagempor dulifs » Ter Nov 01, 2011 17:16

Olá,

Fiz o seguinte exercício: Determine um plano que seja tangente a superfície X^2 + 3Y^2 + 2Z^2 = 11/6 e paralelo ao plano X + Y + Z = 10

\Deltaf ( x, y,z) = ( 2x, 6y, 4z)

Vetor da quação X + Y + Z =10 ==> ( 1,1,1)

(2x,6y,4z) = K (1,1,1)

para K =1

2x=1 x= 1/2

6y=1 y=1/6

4z=1 z=1/4

Montando a equação do plano: (1,1,1)[ ( x - 1/2) + ( y- 1/6) + ( z-1/4) ]
Minha equação do plano deu: X + Y + Z = -11/12

Porém a resposta do livro está X+ Y + Z = -11/6 ou X + Y + Z = 11/6

Creio que errei no vetor, mas se for isso como devo fazer, alguém mais sabe me explicar o que está errado?

muito obrigada, desde já.
dulifs
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Seg Out 31, 2011 15:14
Formação Escolar: GRADUAÇÃO
Área/Curso: economia
Andamento: cursando

Re: [Gradiente de função de três variáveis]

Mensagempor LuizAquino » Ter Nov 01, 2011 22:49

dulifs escreveu:Fiz o seguinte exercício: Determine um plano que seja tangente a superfície X^2 + 3Y^2 + 2Z^2 = 11/6 e paralelo ao plano X + Y + Z = 10

\Delta f ( x,\, y,\, z) = ( 2x,\, 6y,\, 4z)


O símbolo correto para o gradiente é o nabla e não o delta como você escreveu. Isto é, a escrita correta é:

\nabla f ( x,\, y,\, z) = ( 2x,\, 6y,\, 4z)


dulifs escreveu:Creio que errei no vetor, mas se for isso como devo fazer, alguém mais sabe me explicar o que está errado?


Você obteve que:

(2x, 6y, 4z) = k(1, 1, 1)

A partir disso você (magicamente) fixou k = 1. Aqui está o seu erro.

O correto seria fazer o seguinte.

Da equação acima, você tem que:

\begin{cases}
x = \frac{k}{2} \\
y = \frac{k}{6} \\
z = \frac{k}{4}
\end{cases}

Substituindo essas informações na equação da superfície, você tem que:

\left(\frac{k}{2}\right)^2 + 3\left(\frac{k}{6}\right)^2 + 2\left(\frac{k}{4}\right)^2 = \frac{11}{6}

Agora resolva essa equação.

Em seguida, para cada valor de k obtido você terá um ponto (k/2, k/6, k/4).

Por fim, basta montar a equação de cada plano.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.