por procyon » Ter Nov 01, 2011 00:34
Olá pessoal, sou novo aqui, já tive uma participação resolvendo uma dúvida de ou outro colega, agora é a minha vez de pedir uma ajuda. É o seguinte, tenho :
![\int_{0}^{1} \frac{x}{\sqrt[2][4 -3x^{4}]} dx \int_{0}^{1} \frac{x}{\sqrt[2][4 -3x^{4}]} dx](/latexrender/pictures/38d2525d8c07692411687f9d2a7625dc.png)
Não consigo chegar em uma substituição apropriada do tipo u=função que facilite o meu trabalho na integração
Já tentei usar como variável auxiliar u o denominador completo (raíz inclusa) , com o denominador sem a raíz, ou apenas o

Nenhuma dessas idéias resolveu o meu problema.
Grato.
Editado pela última vez por
procyon em Ter Nov 01, 2011 21:47, em um total de 1 vez.
-
procyon
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Seg Out 31, 2011 23:40
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por LuizAquino » Ter Nov 01, 2011 12:21
procyon escreveu:Olá pessoal, sou novo aqui, já tive uma participação resolvendo uma dúvida de ou outro colega, agora é a minha vez de pedir uma ajuda.
Seja bem-vindo ao fórum.
procyon escreveu:
Não consigo chegar em uma substituição apropriada do tipo u=função que facilite o meu trabalho na integração
Use a substituição trigonométrica

e

.
Com essa substituição, quando

, note que

. Já quando

, note que

.
Dessa forma, temos que:

Agora termine o exercício.
ObservaçãoSe você desejar revisar a técnica de substituição trigonométrica, então eu recomendo que você assista a vídeo-aula "37. Cálculo I - Integração por Substituição Trigonométrica". Ela está disponível em meu canal no YouTube:
http://www.youtube.com/LCMAquino
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por procyon » Ter Nov 01, 2011 21:46
-
procyon
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Seg Out 31, 2011 23:40
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Integral] Estou com dificuldade para resolver esta integral
por Paulo Perez » Qui Out 03, 2013 12:22
- 2 Respostas
- 3934 Exibições
- Última mensagem por Paulo Perez

Sex Out 04, 2013 16:32
Cálculo: Limites, Derivadas e Integrais
-
- [INTEGRAL] Integral por partes! Alguem pode me ajudar?
por mih123 » Qua Jan 16, 2013 20:18
- 3 Respostas
- 4391 Exibições
- Última mensagem por adauto martins

Qua Out 22, 2014 09:11
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Resolver Integral definida com trigonometria
por rodrigoboreli » Dom Set 07, 2014 01:02
- 1 Respostas
- 4120 Exibições
- Última mensagem por adauto martins

Sex Out 17, 2014 12:39
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Integral funçao trigonometrica
por ewald » Qua Ago 17, 2011 22:33
- 2 Respostas
- 2681 Exibições
- Última mensagem por ewald

Qui Ago 18, 2011 00:54
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Integral funçao trigonometrica
por ewald » Sáb Ago 20, 2011 17:20
- 2 Respostas
- 2696 Exibições
- Última mensagem por LuizAquino

Dom Ago 21, 2011 21:14
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Unesp - 95 Números Complexos
Autor:
Alucard014 - Dom Ago 01, 2010 18:22
(UNESP - 95) Seja L o Afixo de um Número complexo

em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.
Assunto:
Unesp - 95 Números Complexos
Autor:
MarceloFantini - Qui Ago 05, 2010 17:27
Seja

o ângulo entre o eixo horizontal e o afixo

. O triângulo é retângulo com catetos

e

, tal que

. Seja

o ângulo complementar. Então

. Como

, o ângulo que o afixo

formará com a horizontal será

, mas negativo pois tem de ser no quarto quadrante. Se

, então

. Como módulo é um:

.
Logo, o afixo é

.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.