por beel » Dom Out 30, 2011 21:07
como resolver? tentei por L'Hospital e derivei uma vez mas não esta dando certo
-
beel
- Colaborador Voluntário
-
- Mensagens: 172
- Registrado em: Sex Ago 26, 2011 13:14
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por Aliocha Karamazov » Seg Out 31, 2011 13:26
Esse limite não é calculado como os outros. Pode-se demonstrar que
Esse é o número de Euler. A demonstração, basicamente, mostra que a seguência
é limitada e estritamente crescente. Logo, ela converge. O número para o qual ela converge é o número de Euler
e.
Depois, demonstra-se que
também existe e é igual a
e. Ou seja, o limite da função
é igual ao limite da sequência
.
-
Aliocha Karamazov
- Usuário Parceiro
-
- Mensagens: 90
- Registrado em: Qua Mar 16, 2011 17:26
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Física
- Andamento: cursando
por LuizAquino » Seg Out 31, 2011 15:49
Aliocha Karamazov escreveu:Esse limite não é calculado como os outros.
Uma vez provada a Regra de L'Hospital, podemos usá-la para calcular esse limite.
beel escreveu:como resolver? tentei por L'Hospital e derivei uma vez mas não esta dando certo
Note que para
temos que
.
Vamos chamar de
L o resultado de
. Pelo que expliquei acima, devemos ter
.
Podemos então escrever que:
Vale destacar que apenas podemos aplicar o logaritmo natural em ambos os membros, pois já sabemos que eles são números positivos e não nulos.
Continuando a resolução, como a função logaritmo natural é contínua em todos os pontos de seu domínio, ela pode nesse caso "entrar" no limite.
Esse limite é uma indeterminação do tipo 0/0. Aplicando a Regra de L'Hospital, temos que:
-
LuizAquino
- Colaborador Moderador - Professor
-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Aliocha Karamazov » Seg Out 31, 2011 17:37
LuizAquino escreveu:Aliocha Karamazov escreveu:Esse limite não é calculado como os outros.
Uma vez provada a Regra de L'Hospital, podemos usá-la para calcular esse limite.
Eu só achei que seria estranho utilizar o logaritmo na base
e para calcular
e sem nem ter definido esse número.
-
Aliocha Karamazov
- Usuário Parceiro
-
- Mensagens: 90
- Registrado em: Qua Mar 16, 2011 17:26
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Física
- Andamento: cursando
por LuizAquino » Seg Out 31, 2011 18:09
Aliocha Karamazov escreveu:Eu só achei que seria estranho utilizar o logaritmo na base e para calcular e sem nem ter definido esse número.
Quando definimos a função logaritmo natural nós já fazemos a definição do número irracional
e. E podemos fazer essa definição sem usar o conceito de limite.
-
LuizAquino
- Colaborador Moderador - Professor
-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limite trigonométrico] Como calculo este limite?
por Ronaldobb » Qua Nov 07, 2012 23:14
- 3 Respostas
- 4653 Exibições
- Última mensagem por Ronaldobb
Qui Nov 08, 2012 07:37
Cálculo: Limites, Derivadas e Integrais
-
- limite.como calculo esse limite?
por jeffinps » Ter Mar 12, 2013 12:07
- 1 Respostas
- 2031 Exibições
- Última mensagem por Douglas16
Ter Mar 12, 2013 14:27
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] AJUDA Calculo de Limite
por will94 » Ter Mai 22, 2012 20:32
- 1 Respostas
- 1991 Exibições
- Última mensagem por LuizAquino
Qua Mai 23, 2012 11:46
Cálculo: Limites, Derivadas e Integrais
-
- [Cálculo de Limite] Resolução de um limite
por julianocoutinho » Seg Mai 13, 2013 01:47
- 3 Respostas
- 3056 Exibições
- Última mensagem por Man Utd
Qua Mai 15, 2013 22:26
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] calculo de limite trigonométrico
por PRADO » Dom Mai 22, 2016 17:01
- 2 Respostas
- 5228 Exibições
- Última mensagem por PRADO
Sex Jun 03, 2016 23:25
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
(FGV) ... função novamente rs
Autor:
my2009 - Qua Dez 08, 2010 21:48
Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
Assunto:
(FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25
Uma função de 1º grau é dada por
.
Temos que para
,
e para
,
.
Ache o valor de
e
, monte a função e substitua
por
.
Assunto:
(FGV) ... função novamente rs
Autor:
Pinho - Qui Dez 16, 2010 13:57
my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20
Assunto:
(FGV) ... função novamente rs
Autor:
dagoth - Sex Dez 17, 2010 11:55
isso ai foi uma questao da FGV?
haahua to precisando trocar de faculdade.
Assunto:
(FGV) ... função novamente rs
Autor:
Thiago 86 - Qua Mar 06, 2013 23:11
Saudações!
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b
Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.