• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite.

Limite.

Mensagempor 380625 » Dom Out 23, 2011 20:28

Boa noite estou com dificuldades para calcular esse limite:

\lim_{\((x,y)\to(0,0)}\frac{3x^2y}{\ x^2+y^2}

Encurtando passos afirmo que esse limite precisa ser calculado pela definição, ou seja,

\lim_{\((x,y)\to(a,b)}\frac{3x^2y}{\ x^2+y^2}=L se \forall\varepsilon>0 \exists \delta>0 sempre que (x,y) \in D e 0<\sqrt{(x-a)^2+(y-a)^2}<\delta. Economizando passos temos que o candidato ao limite é 0 e o ponto (a,b)=(0,0) então temos:

\left|\frac {3x^2y} {x^2+y^2} \right|<\epsilon sempre que 0<\sqrt{x^2+y^2}<\delta

\frac {3x^2\left|y \right|} {x^2+y^2}<\epsilon sempre que 0<\sqrt{x^2+y^2}<\delta. Mas

x^2\leq x^2+y^2 para y\geq 0.

Logo.

\frac{x^2} {x^2+y^2}\leq 1

Assim (não entendo o que ele faz abaixo).

\frac{3x^2\left|y \right|} {x^2 +y^2}\leq 3\left|y \right|=3\sqrt{y^2}\leq3\sqrt{x^2+y^2}

de onde vem que 3\sqrt{y^2}\leq 3\sqrt{x^2+y^2}.

Sei que pode estar claro para muitos mas fico um pouco perdido com alguns passos.

Grato Flávio Santana.
380625
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Sex Fev 18, 2011 17:38
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando

Re: Limite.

Mensagempor LuizAquino » Seg Out 24, 2011 17:55

380625 escreveu:Sei que pode estar claro para muitos mas fico um pouco perdido com alguns passos.

Exatamente quais passos você tem dúvidas?
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Limite.

Mensagempor 380625 » Seg Out 24, 2011 23:34

Não entendo as duas ultimas linhas.

Onde digo não entendo o que ele faz abaixo.
380625
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Sex Fev 18, 2011 17:38
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando

Re: Limite.

Mensagempor LuizAquino » Ter Out 25, 2011 12:46

380625 escreveu:Não entendo as duas ultimas linhas.

Onde digo não entendo o que ele faz abaixo.


Ok.

Você já entendeu que:

\frac{x^2} {x^2+y^2}\leq 1

Como 3|y| é positivo, ao multiplicar toda a inequação por essa expressão a inequação não muda de sentido. Isto é, podemos escrever que:

\frac{x^2} {x^2+y^2} \cdot (3|y|)\leq 1\cdot (3|y|)

Mas isso é o mesmo que:

\frac{3x^2|y|} {x^2+y^2} \leq 3|y|

Das propriedades de radiciação, sabemos que \sqrt{y^2} = |y|. Temos então que:

\frac{3x^2|y|} {x^2+y^2} \leq 3\sqrt{y^2}

Das propriedades dos números reais, sabemos que x^2 \geq 0 para qualquer real x.

Somando-se a essa inequação a expressão y^2 em ambos os lados, temos que x^2 + y^2 \geq y^2, para qualquer real y.

Note que ambos os lados dessa inequação são positivos. Calculando-se então a raiz quadrada em ambos os lados temos que \sqrt{x^2 + y^2} \geq \sqrt{y^2} .

Sendo assim, podemos escrever que:

\frac{3x^2|y|} {x^2+y^2} \leq 3\sqrt{y^2} \leq 3\sqrt{x^2 + y^2} \Rightarrow \frac{3x^2|y|} {x^2+y^2} \leq 3\sqrt{x^2 + y^2}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.