por valeuleo » Seg Out 03, 2011 11:59
Tentei resolver as seguintes questões e gostaria que analisassem se as resoluções (resultados e procedimentos) estão corretos. Segue:

Sabendo que:

Tenho que:

Então:
![\int_{}^{}\left[ 1+\frac{\left(-x+6 \right)}{{x}^{2}+x-6}\right]dx = \int_{}^{}1 dx+\int_{}^{}\frac{(-x+6)}{{x}^{2}+x-6}dx \int_{}^{}\left[ 1+\frac{\left(-x+6 \right)}{{x}^{2}+x-6}\right]dx = \int_{}^{}1 dx+\int_{}^{}\frac{(-x+6)}{{x}^{2}+x-6}dx](/latexrender/pictures/4ab67acf64b5dea9213f4a72efe335d2.png)
Fazendo A e B:


Fazendo x=2, obtemos B = 4/5 e com x=-3 obtemos A=-9/5
Fazendo as integrais:

Temos então:

(Depois posto as outras resoluções)
Grato
-
valeuleo
- Usuário Dedicado

-
- Mensagens: 26
- Registrado em: Qua Mar 23, 2011 14:19
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciências da Computação
- Andamento: cursando
por LuizAquino » Seg Out 03, 2011 16:11
Ao invés de "ganhar o peixe", que tal "aprender a pescar"?
Para conferir a sua resolução, siga os passos:
- Acesse a página: http://www.wolframalpha.com/
- No campo de entrada, digite:
- Código: Selecionar todos
integrate (x^2)/(x^2+x-6) dx
- Clique no botão de igual ao lado do campo de entrada.
- Após a integral ser calculada, clique no botão "Show steps" ao lado do resultado.
- Pronto! Basta conferir a resolução.
ObservaçãoObviamente, a resolução pode variar um pouco em relação a sua.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por valeuleo » Seg Out 03, 2011 16:40
Esse site resolve de uma maneira "não acadêmica rsrs". O meu deu diferente, mas os procedimentos da página são outros.
-
valeuleo
- Usuário Dedicado

-
- Mensagens: 26
- Registrado em: Qua Mar 23, 2011 14:19
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciências da Computação
- Andamento: cursando
por LuizAquino » Seg Out 03, 2011 17:16
valeuleo escreveu:Esse site resolve de uma maneira "não acadêmica rsrs". O meu deu diferente, mas os procedimentos da página são outros.
Não "acadêmica"?! A integral foi resolvida aplicando o método das frações parciais da mesma forma que você fez!
A técnica foi aplicada logo no início:
For the integrand

, do long division:
Eis a resposta final indicada na página:
Sendo que na própria página há um aviso:

is the natural logarithm
Considerando-se que onde há parênteses na solução o que temos na verdade são módulos e que nessa página

representa

, a solução apresentada é a mesma que a sua!
ObservaçãoLembre-se que |x - 2| = |2 - x|.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por valeuleo » Seg Out 03, 2011 17:31
Obrigado... eu tinha esquecido do "integrate"
-
valeuleo
- Usuário Dedicado

-
- Mensagens: 26
- Registrado em: Qua Mar 23, 2011 14:19
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciências da Computação
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Derivadas/Integrais] Ajuda com 5 questões de cálculo
por matheuskns » Sex Nov 28, 2014 20:27
- 1 Respostas
- 1770 Exibições
- Última mensagem por Cleyson007

Sáb Nov 29, 2014 20:40
Cálculo: Limites, Derivadas e Integrais
-
- Correção Polinômios
por Cleyson007 » Dom Jan 24, 2010 09:56
- 1 Respostas
- 1603 Exibições
- Última mensagem por DanielFerreira

Sáb Mar 06, 2010 20:39
Polinômios
-
- Correção Polinômios II
por Cleyson007 » Dom Jan 24, 2010 10:14
- 5 Respostas
- 3284 Exibições
- Última mensagem por DanielFerreira

Seg Mar 15, 2010 04:53
Polinômios
-
- Correção Polinômios III
por Cleyson007 » Dom Jan 24, 2010 11:00
- 1 Respostas
- 1639 Exibições
- Última mensagem por vyhonda

Sex Fev 12, 2010 15:18
Polinômios
-
- Correção Polinômios IV
por Cleyson007 » Dom Jan 24, 2010 11:04
- 0 Respostas
- 1088 Exibições
- Última mensagem por Cleyson007

Dom Jan 24, 2010 11:04
Polinômios
Usuários navegando neste fórum: Nenhum usuário registrado e 11 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.