• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[LIMITE] Como mostrar esse lim?

[LIMITE] Como mostrar esse lim?

Mensagempor jandercw » Seg Set 19, 2011 17:17

Olá! Boa tarde! Como demonstro que lim pra x tendendo a 0, de tg(2x) dividido por tg(?x) é igual a 2/? ???
Tentei abrir em sen/cos, mas não consegui simplificar para justificar.
Alguem sabe como justifico isso?
Obrigado!
jandercw
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Set 19, 2011 17:06
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Controle e Automação
Andamento: cursando

Re: [LIMITE] Como mostrar esse lim?

Mensagempor MarceloFantini » Seg Set 19, 2011 17:35

Note que \lim_{x \to 0} \frac{\tan (2x)}{\tan (\pi x)} = \lim_{x \to 0} \frac{\sin (2x)}{\cos (2x)} \cdot \frac{\cos (\pi x)}{\sin (\pi x)}. Multiplicando numerador e denominador por 2 \pi x, temos:

\lim_{x \to 0} \frac{\sin (2x)}{2x} \cdot \frac{1}{\cos (2x)} \cdot \cos (\pi x) \cdot \frac{1}{\frac{\sin (\pi x)}{\pi x}} \cdot \frac{2}{\pi}

Lembrando do limite fundamental \lim_{k \to 0} \frac{\sin k}{k} = 1, temos a resposta.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}