• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral indefinida (por substituição)

Integral indefinida (por substituição)

Mensagempor Anne2011 » Sex Set 16, 2011 23:17

E essa agora?

\int_{}^{}\sqrt[]{x}{sen}^{2}({x}^{\frac{3}{2}}-1)dx,

u={x}^{\frac{3}{2}}-1

Fiz a primeira vez sem dividir a integral em duas, e depois separei mas não deu certo...
Anne2011
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Qui Jun 23, 2011 17:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Mecanica
Andamento: cursando

Re: Integral indefinida (por substituição)

Mensagempor MarceloFantini » Sex Set 16, 2011 23:28

Qual foi o seu desenvolvimento? A substituição está certa.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Integral indefinida (por substituição)

Mensagempor Anne2011 » Sáb Set 17, 2011 14:44

\int_{}^{}\sqrt[]{x}{sen}^{2}({x}^{\frac{3}{2}}-1)dx

u={x}^{\frac{3}{2}}-1

du=\frac{3}{2}{x}^{\frac{1}{2}}dx

\frac{du}{\frac{3}{2}{x}^{\frac{1}{2}}}=dx

Acho que estou errando na substtuição do dx X du... Mas prosseguindo, primeiro separei em duas integrais:

\int_{}^{}\sqrt[]{x}dx     \int_{}^{}{sen}^{2}({x}^{\frac{3}{2}}-1)dx

Substituindo:

\int_{}^{}\sqrt[]{x}\frac{du}{\frac{3}{2}{x}^{\frac{1}{2}}}     \int_{}^{}{sen}^{2}u\frac{du}{\frac{3}{2}{x}^{\frac{1}{2}}}

Quando cheguei aí imaginei que não poderia integrar raíz de x em função de du, mas du=dx, então continuei:


\int_{}^{}\sqrt[]{x}\frac{du}{\frac{3\sqrt[]{x}}{2}}  \int_{}^{}{sen}^{2}u\frac{du}{\frac{3\sqrt[]{x}}{2}}


Daí pra lá desandou td.

Cheguei a vários resultados absurdos.
Anne2011
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Qui Jun 23, 2011 17:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Mecanica
Andamento: cursando

Re: Integral indefinida (por substituição)

Mensagempor MarceloFantini » Sáb Set 17, 2011 17:28

Você acertou a substituição e a derivada, mas você NÃO DEVE isolar o \textrm{d}x! E não existe essa separação de integral, isto é um erro gravíssimo! Aqui está como você deve fazer:

u = x^{\frac{3}{2}} -1 \implies \textrm{d}u = \frac{3}{2} \cdot x^{\frac{1}{2}} \textrm{d}x \implies \frac{2}{3}\textrm{d}u = \sqrt{x} \textrm{d}x

Fazendo a substituição na integral:

\int \sqrt{x} \textrm{sen}^2(x^{\frac{3}{2}} -1) \, \textrm{d}x = \int \textrm{sen} 2(x^{\frac{3}{2}} -1) \underbrace{\sqrt{x} \, \textrm{d}x}_{\frac{2}{3} \textrm{d}u} =

= \int \textrm{sen }^2u \, \textrm{d}u

Agora use que \textrm{sen}^2 u = \frac{1 - \cos 2u}{2} e a integral sairá facilmente.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}