• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral indefinida (por substituição)

Integral indefinida (por substituição)

Mensagempor Anne2011 » Sex Set 16, 2011 23:17

E essa agora?

\int_{}^{}\sqrt[]{x}{sen}^{2}({x}^{\frac{3}{2}}-1)dx,

u={x}^{\frac{3}{2}}-1

Fiz a primeira vez sem dividir a integral em duas, e depois separei mas não deu certo...
Anne2011
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Qui Jun 23, 2011 17:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Mecanica
Andamento: cursando

Re: Integral indefinida (por substituição)

Mensagempor MarceloFantini » Sex Set 16, 2011 23:28

Qual foi o seu desenvolvimento? A substituição está certa.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Integral indefinida (por substituição)

Mensagempor Anne2011 » Sáb Set 17, 2011 14:44

\int_{}^{}\sqrt[]{x}{sen}^{2}({x}^{\frac{3}{2}}-1)dx

u={x}^{\frac{3}{2}}-1

du=\frac{3}{2}{x}^{\frac{1}{2}}dx

\frac{du}{\frac{3}{2}{x}^{\frac{1}{2}}}=dx

Acho que estou errando na substtuição do dx X du... Mas prosseguindo, primeiro separei em duas integrais:

\int_{}^{}\sqrt[]{x}dx     \int_{}^{}{sen}^{2}({x}^{\frac{3}{2}}-1)dx

Substituindo:

\int_{}^{}\sqrt[]{x}\frac{du}{\frac{3}{2}{x}^{\frac{1}{2}}}     \int_{}^{}{sen}^{2}u\frac{du}{\frac{3}{2}{x}^{\frac{1}{2}}}

Quando cheguei aí imaginei que não poderia integrar raíz de x em função de du, mas du=dx, então continuei:


\int_{}^{}\sqrt[]{x}\frac{du}{\frac{3\sqrt[]{x}}{2}}  \int_{}^{}{sen}^{2}u\frac{du}{\frac{3\sqrt[]{x}}{2}}


Daí pra lá desandou td.

Cheguei a vários resultados absurdos.
Anne2011
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Qui Jun 23, 2011 17:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Mecanica
Andamento: cursando

Re: Integral indefinida (por substituição)

Mensagempor MarceloFantini » Sáb Set 17, 2011 17:28

Você acertou a substituição e a derivada, mas você NÃO DEVE isolar o \textrm{d}x! E não existe essa separação de integral, isto é um erro gravíssimo! Aqui está como você deve fazer:

u = x^{\frac{3}{2}} -1 \implies \textrm{d}u = \frac{3}{2} \cdot x^{\frac{1}{2}} \textrm{d}x \implies \frac{2}{3}\textrm{d}u = \sqrt{x} \textrm{d}x

Fazendo a substituição na integral:

\int \sqrt{x} \textrm{sen}^2(x^{\frac{3}{2}} -1) \, \textrm{d}x = \int \textrm{sen} 2(x^{\frac{3}{2}} -1) \underbrace{\sqrt{x} \, \textrm{d}x}_{\frac{2}{3} \textrm{d}u} =

= \int \textrm{sen }^2u \, \textrm{d}u

Agora use que \textrm{sen}^2 u = \frac{1 - \cos 2u}{2} e a integral sairá facilmente.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59