por vmouc » Qui Set 01, 2011 18:03
Boa tarde,
Prezados colega,
Gostaria de contar com a colaboração de vocês para entender o processo de resolução da seguinte integral definida:

Eu sei que os intervalos estão de uma forma não convencional mas é assim que está no exercício do livro. Fiz diversas tentativas mas não consegui alcançar o resultado

, o qual me foi passado pelo professor.
Alguem poderia, por gentileza, me informar passo a passo o processo de resolução deste tipo de integral definida?
Atenciosamente,
Vinícius
Vinícius Costa
-
vmouc
- Usuário Dedicado

-
- Mensagens: 43
- Registrado em: Sáb Mar 05, 2011 22:31
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
-
por LuizAquino » Qui Set 01, 2011 18:05
DicaNote que:
Observaçãovmouc escreveu:Eu sei que os intervalos estão de uma forma não convencional mas é assim que está no exercício do livro.
"
Não convencional"? Não há problema algum com o intervalo de integração apresentado.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por vmouc » Qui Set 01, 2011 18:19
Geralmente o intervalo superior é o numero maior e o inferior é o numero menor, pelo que eu havia entendido. Está certo?
Vinícius Costa
-
vmouc
- Usuário Dedicado

-
- Mensagens: 43
- Registrado em: Sáb Mar 05, 2011 22:31
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
-
por vmouc » Qui Set 01, 2011 18:28
Pois é, minha resolução ficou:

![2[-{t}^{-1}]-7[-\frac{{t}^{-2}}{2}] 2[-{t}^{-1}]-7[-\frac{{t}^{-2}}{2}]](/latexrender/pictures/f0f43fde1b83aad7c1198ccdc7ae1082.png)
Mas ao substituir não dá certo
Vinícius Costa
-
vmouc
- Usuário Dedicado

-
- Mensagens: 43
- Registrado em: Sáb Mar 05, 2011 22:31
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
-
por LuizAquino » Qui Set 01, 2011 18:54
vmouc escreveu:Geralmente o intervalo superior é o numero maior e o inferior é o numero menor, pelo que eu havia entendido. Está certo?
Não há problema quanto a isso. Basta lembrar da propriedade:

.
vmouc escreveu:Pois é, minha resolução ficou:

![2[-{t}^{-1}]-7[-\frac{{t}^{-2}}{2}] 2[-{t}^{-1}]-7[-\frac{{t}^{-2}}{2}]](/latexrender/pictures/f0f43fde1b83aad7c1198ccdc7ae1082.png)
Mas ao substituir não dá certo
Você deve estar se atrapalhando nas substituições. Envie o procedimento que você fez depois desse ponto.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Resolução de Integral Definida]
por Seza Saenz » Qui Mar 24, 2016 15:18
- 0 Respostas
- 2000 Exibições
- Última mensagem por Seza Saenz

Qui Mar 24, 2016 15:18
Cálculo: Limites, Derivadas e Integrais
-
- [INTEGRAL DEFINIDA] Duvidas na resolução
por fabriel » Sex Mar 22, 2013 13:09
- 1 Respostas
- 1425 Exibições
- Última mensagem por young_jedi

Sáb Mar 23, 2013 16:42
Cálculo: Limites, Derivadas e Integrais
-
- [Integral Definida] Está certa minha resolução?
por Fabio Wanderley » Seg Out 22, 2012 23:37
- 2 Respostas
- 2032 Exibições
- Última mensagem por Fabio Wanderley

Ter Out 23, 2012 00:45
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Resolver Integral definida com trigonometria
por rodrigoboreli » Dom Set 07, 2014 01:02
- 1 Respostas
- 4342 Exibições
- Última mensagem por adauto martins

Sex Out 17, 2014 12:39
Cálculo: Limites, Derivadas e Integrais
-
- [Cálculo Integral] Integral Definida
por ARCS » Sáb Fev 02, 2013 21:37
- 2 Respostas
- 3671 Exibições
- Última mensagem por e8group

Sáb Fev 02, 2013 22:13
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.