por killerkill » Sáb Ago 20, 2011 13:18
Sou eu mais uma vez!
O exercício dessa vez é um limite de uma função modular.

se x>1
se x<1
Então analisando os limites laterais:

e

não sei oque faço agora com esse limite . Não sei como eliminar a indeterminação dele.
-
killerkill
- Usuário Dedicado

-
- Mensagens: 25
- Registrado em: Ter Ago 09, 2011 22:39
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eg. Elétrica
- Andamento: cursando
por MarceloFantini » Sáb Ago 20, 2011 14:49
Note que

, logo:

. Tente analisar o sinal agora.
Cuidado:

.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por killerkill » Sáb Ago 20, 2011 17:05
Marcelo, confesso que estou meio perdido quanto ao conceito de módulo nesse exercício... a unica coisa que sei é o seguinte..

até onde eu sabia esse módulo poderia ser duas coisas.. ou x-1 ou -x+1... realmente estou perdendo algum detalhe do fundamento, sou meio fraco nisso... me ajuda por favor? oque eu devo fazer com o módulo? ele nao assume x-1 em uma possibilidade e -x+1 em outra nao? poderia me explicar por favor?
-
killerkill
- Usuário Dedicado

-
- Mensagens: 25
- Registrado em: Ter Ago 09, 2011 22:39
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eg. Elétrica
- Andamento: cursando
por LuizAquino » Seg Ago 22, 2011 09:00
killerkill escreveu:o que eu devo fazer com o módulo?
Como o colega Fantini disse, temos que

Aplicando a definição de módulo, os limites laterais ficam como:
(i)

;
(ii)

.
Agora termine o exercício.
ObservaçãoSe

, então dizemos que

não existe.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por killerkill » Seg Ago 22, 2011 10:15
Luiz, foi isso que eu fiz, inclusive minha dúvida inicial é essa, pois não consegui determinar o limite quando x tende a 1 um por valores menores que ele. Então no caso meu raciocínio estava correto, ja que analisei os limites laterais. só não consegui resolver esse limite lateral.
-
killerkill
- Usuário Dedicado

-
- Mensagens: 25
- Registrado em: Ter Ago 09, 2011 22:39
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eg. Elétrica
- Andamento: cursando
por LuizAquino » Seg Ago 22, 2011 10:52
killerkill escreveu:Luiz, foi isso que eu fiz, inclusive minha dúvida inicial é essa, pois não consegui determinar o limite quando x tende a 1 um por valores menores que ele.
Note que:

killerkill escreveu:Então no caso meu raciocínio estava correto, ja que analisei os limites laterais. só não consegui resolver esse limite lateral.
De fato, você estava no caminho. Mas, vale lembrar que, como o Fantini apontou acima, você errou o produto notável no numerador.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por killerkill » Seg Ago 22, 2011 12:32
Eu notei o erro depois, mais foi erro na hora do editor de formulas, ctrl c e ctrl v, hehe... pode deixar que as regrinhas de fatoração estou por dentro.. =D mais quanto a questão, putz! é verdade, eu estava colocando o (-) no x e o (+) no 1, e depois não sabia como cancelava o denominador com o termo do numerador. mais agora vi oque eu estava fazendo errado, bastava cancelar o termo e depois o menos faria o polinômio ficar negativo. Luiz e Marcelo, muito obrigado!
-
killerkill
- Usuário Dedicado

-
- Mensagens: 25
- Registrado em: Ter Ago 09, 2011 22:39
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eg. Elétrica
- Andamento: cursando
por LuizAquino » Seg Ago 22, 2011 12:44
killerkill escreveu:putz! é verdade, eu estava colocando o (-) no x e o (+) no 1, e depois não sabia como cancelava o denominador com o termo do numerador.
Veja o tópico:
Dúvida simples sobre algebra.viewtopic.php?f=106&t=5466
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por killerkill » Dom Set 04, 2011 16:45
esse limite nao existe então ne? ja que os limites laterais sao diferentes.
-
killerkill
- Usuário Dedicado

-
- Mensagens: 25
- Registrado em: Ter Ago 09, 2011 22:39
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eg. Elétrica
- Andamento: cursando
por LuizAquino » Dom Set 04, 2011 17:18
killerkill escreveu:esse limite nao existe então ne? ja que os limites laterais sao diferentes.
De fato ele não existe.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Limite modular, me ajudem!
por arthurvct » Ter Abr 23, 2013 14:50
- 3 Respostas
- 1445 Exibições
- Última mensagem por arthurvct

Ter Abr 23, 2013 17:18
Cálculo: Limites, Derivadas e Integrais
-
- Funçao modular
por Fiel8 » Sex Jul 10, 2009 19:25
- 1 Respostas
- 2518 Exibições
- Última mensagem por Molina

Sex Jul 10, 2009 21:50
Funções
-
- Função Modular
por geriane » Sáb Abr 03, 2010 21:32
- 3 Respostas
- 2978 Exibições
- Última mensagem por Molina

Dom Abr 04, 2010 12:57
Funções
-
- Funçao modular
por Skcedas » Qua Mai 26, 2010 19:29
- 6 Respostas
- 5128 Exibições
- Última mensagem por netlopes

Ter Jun 08, 2010 18:11
Funções
-
- Função Modular
por DanieldeLucena » Seg Set 20, 2010 18:03
- 1 Respostas
- 2141 Exibições
- Última mensagem por MarceloFantini

Seg Set 20, 2010 19:35
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.