por Inference » Qua Ago 03, 2011 13:03
Amigos, vocês poderiam me ajudar a derivar essa função em relação a x?
Depois disso como eu integro a E(X)? Ou seja, preciso integrar de 0 a infinito, o resultado a derivação inicial vezes x.
Obrigado!
- Anexos
-

- questão.jpg (11.45 KiB) Exibido 3943 vezes
-
Inference
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Qua Ago 03, 2011 12:44
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por LuizAquino » Qui Ago 04, 2011 21:37
Para derivar a função

é necessário usar a
Regra da Cadeia. Ficaremos com:

Se f(x) é a
função densidade de probabilidade da variável aleatória contínua X, devemos ter

para todo x no domínio e

.
Considere agora a função:

Apesar dessa função ser maior ou igual a zero para todo x no seu domínio, note que

.
Nesse contexto, f não pode ser uma função densidade de probabilidade. Não fará sentido você querer calcular E[X].
Qual é o texto completo do exercício?
Além disso, aproveito para informar que você não deve postar o texto do exercício como uma imagem, pois isso prejudica as ferramentas de busca. Por favor, sempre digite o texto do exercício.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Inference » Sex Ago 05, 2011 11:48
LuizAquino escreveu:Para derivar a função

é necessário usar a
Regra da Cadeia. Ficaremos com:

Se f(x) é a
função densidade de probabilidade da variável aleatória contínua X, devemos ter

para todo x no domínio e

.
Considere agora a função:

Apesar dessa função ser maior ou igual a zero para todo x no seu domínio, note que

.
Nesse contexto, f não pode ser uma função densidade de probabilidade. Não fará sentido você querer calcular E[X].
Qual é o texto completo do exercício?
Além disso, aproveito para informar que você não deve postar o texto do exercício como uma imagem, pois isso prejudica as ferramentas de busca. Por favor, sempre digite o texto do exercício.
Luiz, primeiramente obrigado pela sua resposta. Fico devendo o enunciado porque estou sem ele agora.
Essa função que você derivou não é uma função densidade e sim um função de distribuição. Você derivando a função de distribuição chega à função de densidade, que é essa que você achou pela Regra da Cadeia.
Agora que é a etapa que eu não estou conseguindo, que é achar a média dessa função f'(x) (integrando de 0 a infinito).
Obrigado!
-
Inference
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Qua Ago 03, 2011 12:44
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por MarceloFantini » Sex Ago 05, 2011 13:35
Derivando, temos que

. Então

. Agora é resolver por partes.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Inference » Sex Ago 05, 2011 13:45
MarceloFantini escreveu:Derivando, temos que

. Então

. Agora é resolver por partes.
Obrigado Marcelo! Exatamente! Como eu resolvo essa integral? Fazendo Integração por Partes?
Obrigado!
-
Inference
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Qua Ago 03, 2011 12:44
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por MarceloFantini » Sex Ago 05, 2011 13:47
Sim, integração por partes.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Inference » Sex Ago 05, 2011 14:19
MarceloFantini escreveu:Sim, integração por partes.
Estou com dificuldades de fazer essa integração, pois na expressão da integração por partes temos a expressão: INT (f(x) * g'(x))dx = f(x)*g(x) -
INT f'(x) * g(x) dxNão consigo resolver a expressão
INT f'(x) * g(x) dx (lembrando que ela tende também de 0 a infinito).
Eu lembro que há uma solução direta de integral de 0 a infinito para distribuição exponencial, mas acho que ela não se aplica nesse caso.
-
Inference
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Qua Ago 03, 2011 12:44
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por MarceloFantini » Sex Ago 05, 2011 14:37
Tente resolver sem os limites para encontrar a primitiva, e depois aplique os limites no resultado.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Inference » Sex Ago 05, 2011 14:50
MarceloFantini escreveu:Tente resolver sem os limites para encontrar a primitiva, e depois aplique os limites no resultado.
Eu posso resolver a integral sem o 0 e o infinito e depois aplico limites? Eu não sabia que posso resolver integrais tirando essa variação e depois aplico limites. Tentarei resolver desse jeito.
Muito obrigado!
-
Inference
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Qua Ago 03, 2011 12:44
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por MarceloFantini » Sex Ago 05, 2011 14:58
Com aplicar os limites que quero dizer o seguinte: você tem a integral definida

, que tem uma primitiva. O que você vai fazer é resolver a integral
indefinida 
, encontrar a primitiva

e retornar à integral original, fazendo

.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Inference » Sex Ago 05, 2011 15:17
MarceloFantini escreveu:Com aplicar os limites que quero dizer o seguinte: você tem a integral definida

, que tem uma primitiva. O que você vai fazer é resolver a integral
indefinida 
, encontrar a primitiva

e retornar à integral original, fazendo

.
Ah tá, ok! Tinha entendido errado. Levei até um susto, rs...
Entendi, mas tenho que aplicar o infinito em F(x) = F(b) - F(a). Essa parte que não sei se consiguirei resolver. Irei fazer.
Obrigado!
-
Inference
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Qua Ago 03, 2011 12:44
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por LuizAquino » Sex Ago 05, 2011 15:52
Inference escreveu:Essa função que você derivou não é uma função densidade e sim um função de distribuição.
Vamos esclarecer as definições. Para essa função do exercício ser uma
função de distribuição acumulada, estamos considerando:

, com

.
Agora você deseja calcular a
integral imprópria:

Para fazer isso, você deve resolver o limite:

Como o colega Fantini falou, essa integral é resolvida por partes (por exemplo, fazendo

e

, portanto

e

). Após resolver a integral, você fica com algo como F(t) - F(0) (com F primitiva de f). Daí, basta resolver o limite:
ObservaçãoÉ recomendado que você revise o conteúdo de integrais impróprias.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Inference » Sex Ago 05, 2011 17:05
LuizAquino escreveu:Inference escreveu:Essa função que você derivou não é uma função densidade e sim um função de distribuição.
Vamos esclarecer as definições. Para essa função do exercício ser uma
função de distribuição acumulada, estamos considerando:

, com

.
Agora você deseja calcular a
integral imprópria:

Para fazer isso, você deve resolver o limite:

Como o colega Fantini falou, essa integral é resolvida por partes (por exemplo, fazendo

e

, portanto

e

). Após resolver a integral, você fica com algo como F(t) - F(0) (com F primitiva de f). Daí, basta resolver o limite:
ObservaçãoÉ recomendado que você revise o conteúdo de integrais impróprias.
Ok Luiz e Fantini, muito obrigado pela ajuda!
Abs
Maurício (Inference)
-
Inference
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Qua Ago 03, 2011 12:44
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Duvida em integração por partes !!!
por gerson25 » Qua Fev 23, 2011 23:01
- 2 Respostas
- 2574 Exibições
- Última mensagem por gerson25

Qui Fev 24, 2011 17:51
Cálculo: Limites, Derivadas e Integrais
-
- [INTEGRAL INDEFINIDA] Duvida de integração
por fabriel » Qua Out 03, 2012 16:20
- 3 Respostas
- 1906 Exibições
- Última mensagem por fabriel

Qua Out 03, 2012 17:39
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Duvida na integração Por partes
por fabriel » Sáb Out 06, 2012 18:56
- 1 Respostas
- 1485 Exibições
- Última mensagem por MarceloFantini

Sáb Out 06, 2012 19:17
Cálculo: Limites, Derivadas e Integrais
-
- [integração por partes] Dúvida teórica
por natanaelskt » Qui Jul 17, 2014 03:00
- 1 Respostas
- 1451 Exibições
- Última mensagem por e8group

Qui Jul 17, 2014 10:03
Cálculo: Limites, Derivadas e Integrais
-
- [Integração Definida] dúvida em integral com u.du
por Nicolas1Lane » Sáb Ago 30, 2014 20:36
- 3 Respostas
- 3201 Exibições
- Última mensagem por DanielFerreira

Dom Set 07, 2014 21:35
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.