• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada!

Derivada!

Mensagempor giulioaltoe » Qui Jul 21, 2011 17:04

eu tenho a expressão \frac{t^3+1}{t^2-t-2} pede pra eu achar a derivada!eu encontrei o valor \frac{t^2-4t-3}{(t-2)^2} e no wolfram alpha ao inves de -3 ta dando +1, ja revisei a conta e nao estou achando meu erro!!
ve se alguem da um help ai...valew!
giulioaltoe
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qui Jun 23, 2011 21:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia metalurgica e mat - UENF
Andamento: cursando

Re: Derivada!

Mensagempor LuizAquino » Qui Jul 21, 2011 17:08

Envie a sua resolução para que possamos identificar onde está o problema.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Derivada!

Mensagempor giulioaltoe » Qui Jul 21, 2011 19:33

\frac{t^3+1}{t^2-t-2}=\frac{(t+1)(t^2+t+1)}{(t+1)(t-2)} apos cortar os termos comuns.. desenvolvi a derivada y'=\frac{(2t+1)(t-2)-(t^2+t+1)(1)}{(t-2)^2} e isso gerou \frac{2t^2-4t+t-2-t^2-t-1}{(t-2)^2}[\tex] = [tex]\frac{t^2-4t-3}{(t-2)^2}... ai ???
giulioaltoe
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qui Jun 23, 2011 21:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia metalurgica e mat - UENF
Andamento: cursando

Re: Derivada!

Mensagempor MarceloFantini » Qui Jul 21, 2011 19:51

Esta é a resposta, não há mais simplificações possíveis.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Derivada!

Mensagempor giulioaltoe » Qui Jul 21, 2011 19:57

uhum, mas quando joguei a conta no wolfram alpha nao bateu a resposta!
giulioaltoe
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qui Jun 23, 2011 21:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia metalurgica e mat - UENF
Andamento: cursando

Re: Derivada!

Mensagempor LuizAquino » Qui Jul 21, 2011 20:05

O seu erro está logo no início. Note que:
t^3+1\neq (t+1)(t^2+t+1)

Na verdade, o que temos é:
t^3+1 = (t+1)(t^2-t+1)
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Derivada!

Mensagempor MarceloFantini » Qui Jul 21, 2011 20:06

Ah, percebi. Um erro passou despercebido: t^3 +1 = (t+1)(t^2 -t+1) e não (t+1)(t^2 +t +1) = t^3 +t^2 +t +t^2 +t +1 = t^3 +2t^2 +2t +1
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Derivada!

Mensagempor giulioaltoe » Qui Jul 21, 2011 20:16

hum e mesmo, sempre erro esses detalhezinhos... perdi quase 1 ponto numa prova que fiz so em erro assim!! vlw ai.. e isso msm!
giulioaltoe
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qui Jun 23, 2011 21:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia metalurgica e mat - UENF
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.