por rita becher » Qui Jun 02, 2011 00:20
Como resolver a integral
![[tex]\int_{}sen3xcosx dx^{} [tex]\int_{}sen3xcosx dx^{}](/latexrender/pictures/1f6680d3db24c1476ac3cb0df435656b.png)
[/tex] tentei usar sen ax.cos bx, mas não consegui evoluir. A resposta deverá ser
![[tex]1/8(sen3xsenx + 3cos3xcosx)+ c [tex]1/8(sen3xsenx + 3cos3xcosx)+ c](/latexrender/pictures/bb8f128293479e7822968f6535c3405c.png)
[/tex]
Editado pela última vez por
rita becher em Sex Jun 03, 2011 14:48, em um total de 1 vez.
-
rita becher
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Dom Mai 15, 2011 19:18
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por VtinxD » Qui Jun 02, 2011 00:57
Tente usar que

-
VtinxD
- Usuário Parceiro

-
- Mensagens: 64
- Registrado em: Dom Ago 15, 2010 18:29
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Bacharelado em Matematica
- Andamento: cursando
por rita becher » Sex Jun 03, 2011 14:49
Mesmo assim não consegui. Vc poderia me ajudar?
-
rita becher
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Dom Mai 15, 2011 19:18
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por DanielFerreira » Sex Jun 03, 2011 16:18
Rita,
f(x) = sen(3x)
f'(x) = 3 * - cos (3x)
g'(x) = cos x
g(x) = sen x



Integramos...

F(x) = cos (3x)
F'(x) = - 3 . sen (3x)
G'(x) = sen x
G(x) = - cos x

![\int_{}sen (3x) . cos x dx{} = sen (3x) . cos x + 3[cos (3x) . sen x - \int_{}- sen (3x) . 3 . - cos x dx{}] \int_{}sen (3x) . cos x dx{} = sen (3x) . cos x + 3[cos (3x) . sen x - \int_{}- sen (3x) . 3 . - cos x dx{}]](/latexrender/pictures/c7bef8a2c75fd3e50dfb306493ddaef6.png)
![\int_{}sen (3x) . cos x dx{} = sen (3x) . cos x + 3[cos (3x) . sen x - 3 \int_{}sen (3x) . cos x dx{}] \int_{}sen (3x) . cos x dx{} = sen (3x) . cos x + 3[cos (3x) . sen x - 3 \int_{}sen (3x) . cos x dx{}]](/latexrender/pictures/5496160d56514cfa9b0020e21bd7904c.png)




DEsculpe caso tenha cometido "alguns" erros.
rsr
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por rita becher » Sáb Jun 04, 2011 13:01
muitissimo obrigado
-
rita becher
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Dom Mai 15, 2011 19:18
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [INTEGRAL] Integral por partes! Alguem pode me ajudar?
por mih123 » Qua Jan 16, 2013 20:18
- 3 Respostas
- 4389 Exibições
- Última mensagem por adauto martins

Qua Out 22, 2014 09:11
Cálculo: Limites, Derivadas e Integrais
-
- integral por partes
por rita becher » Qua Jun 01, 2011 22:05
- 2 Respostas
- 2204 Exibições
- Última mensagem por rita becher

Qui Jun 02, 2011 10:30
Cálculo: Limites, Derivadas e Integrais
-
- Integral por Partes
por Guilherme Carvalho » Ter Mar 06, 2012 23:08
- 2 Respostas
- 2014 Exibições
- Última mensagem por Guilherme Carvalho

Qua Mar 07, 2012 10:39
Cálculo: Limites, Derivadas e Integrais
-
- integral por partes
por gasparina nunes » Sáb Abr 07, 2012 23:42
- 3 Respostas
- 2426 Exibições
- Última mensagem por fraol

Dom Abr 08, 2012 22:43
Cálculo: Limites, Derivadas e Integrais
-
- Integral por partes
por liviatoniolo222 » Seg Mai 21, 2018 22:54
- 3 Respostas
- 8102 Exibições
- Última mensagem por liviatoniolo222

Ter Mai 22, 2018 20:48
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.