• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Ajuda ( Estudar para exame)

Ajuda ( Estudar para exame)

Mensagempor legendkiller2009 » Qui Jun 02, 2011 09:37

Estou a estudar para um exame que vou ter de matemática e não tou a conseguir resolver estas primitivas:

g(x)=\frac{\sqrt[2]{1+3x}}{x+1}

h(x)=\frac{x}{\left({x}^{2}-1 \right)\left(x+1 \right)},xe \right]]-1,1 \left[

Obrigado
legendkiller2009
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qua Jun 01, 2011 19:14
Formação Escolar: GRADUAÇÃO
Área/Curso: informatica
Andamento: cursando

Re: Ajuda ( Estudar para exame)

Mensagempor legendkiller2009 » Qui Jun 02, 2011 12:17

ninguem?
legendkiller2009
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qua Jun 01, 2011 19:14
Formação Escolar: GRADUAÇÃO
Área/Curso: informatica
Andamento: cursando

Re: Ajuda ( Estudar para exame)

Mensagempor LuizAquino » Qui Jun 02, 2011 15:25

Qual foi exatamente a sua dificuldade?

Até onde você conseguiu desenvolver?
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Ajuda ( Estudar para exame)

Mensagempor legendkiller2009 » Qui Jun 02, 2011 19:36

A segunda já consegui resolver mas a primeira não consigo resolver nem por nada, gostava que alguem me ajuda-se.
legendkiller2009
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qua Jun 01, 2011 19:14
Formação Escolar: GRADUAÇÃO
Área/Curso: informatica
Andamento: cursando

Re: Ajuda ( Estudar para exame)

Mensagempor LuizAquino » Qui Jun 02, 2011 20:07

Você deseja resolver: \int \frac{\sqrt{1+3x}}{x+1} \, dx .

Uma maneira é fazer a substituição u = \sqrt{1 + 3x} . Note que nesse caso teremos que \frac{2u}{3} du = dx e x = \frac{u^2 - 1}{3} . Portanto, basta resolver: \frac{2}{3}\int \frac{u^2}{\frac{u^2-1}{3} + 1}\,du .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Ajuda ( Estudar para exame)

Mensagempor legendkiller2009 » Qui Jun 02, 2011 21:26

luiz aquino , vou te ser sincero, não percebi nada do que escreveste.
legendkiller2009
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qua Jun 01, 2011 19:14
Formação Escolar: GRADUAÇÃO
Área/Curso: informatica
Andamento: cursando

Re: Ajuda ( Estudar para exame)

Mensagempor LuizAquino » Qui Jun 02, 2011 22:05

Por definição, dizemos que a função F é uma primitiva de f se tivermos que F'(x) = f(x).

Por exemplo, a função F(x) = x³ é uma primitiva de f(x)=3x².

Agora, dada a função g(x) = \frac{\sqrt{1+3x}}{x+1}, temos que G(x) = \int g(x)\, dx é uma primitiva de g.

Eu imagino que você já tenha estudado o conteúdo de integral indefinida e a técnica de integração por substituição. Ou não?
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)