por rita becher » Qui Jun 02, 2011 00:20
Como resolver a integral
![[tex]\int_{}sen3xcosx dx^{} [tex]\int_{}sen3xcosx dx^{}](/latexrender/pictures/1f6680d3db24c1476ac3cb0df435656b.png)
[/tex] tentei usar sen ax.cos bx, mas não consegui evoluir. A resposta deverá ser
![[tex]1/8(sen3xsenx + 3cos3xcosx)+ c [tex]1/8(sen3xsenx + 3cos3xcosx)+ c](/latexrender/pictures/bb8f128293479e7822968f6535c3405c.png)
[/tex]
Editado pela última vez por
rita becher em Sex Jun 03, 2011 14:48, em um total de 1 vez.
-
rita becher
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Dom Mai 15, 2011 19:18
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por VtinxD » Qui Jun 02, 2011 00:57
Tente usar que

-
VtinxD
- Usuário Parceiro

-
- Mensagens: 64
- Registrado em: Dom Ago 15, 2010 18:29
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Bacharelado em Matematica
- Andamento: cursando
por rita becher » Sex Jun 03, 2011 14:49
Mesmo assim não consegui. Vc poderia me ajudar?
-
rita becher
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Dom Mai 15, 2011 19:18
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por DanielFerreira » Sex Jun 03, 2011 16:18
Rita,
f(x) = sen(3x)
f'(x) = 3 * - cos (3x)
g'(x) = cos x
g(x) = sen x



Integramos...

F(x) = cos (3x)
F'(x) = - 3 . sen (3x)
G'(x) = sen x
G(x) = - cos x

![\int_{}sen (3x) . cos x dx{} = sen (3x) . cos x + 3[cos (3x) . sen x - \int_{}- sen (3x) . 3 . - cos x dx{}] \int_{}sen (3x) . cos x dx{} = sen (3x) . cos x + 3[cos (3x) . sen x - \int_{}- sen (3x) . 3 . - cos x dx{}]](/latexrender/pictures/c7bef8a2c75fd3e50dfb306493ddaef6.png)
![\int_{}sen (3x) . cos x dx{} = sen (3x) . cos x + 3[cos (3x) . sen x - 3 \int_{}sen (3x) . cos x dx{}] \int_{}sen (3x) . cos x dx{} = sen (3x) . cos x + 3[cos (3x) . sen x - 3 \int_{}sen (3x) . cos x dx{}]](/latexrender/pictures/5496160d56514cfa9b0020e21bd7904c.png)




DEsculpe caso tenha cometido "alguns" erros.
rsr
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por rita becher » Sáb Jun 04, 2011 13:01
muitissimo obrigado
-
rita becher
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Dom Mai 15, 2011 19:18
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [INTEGRAL] Integral por partes! Alguem pode me ajudar?
por mih123 » Qua Jan 16, 2013 20:18
- 3 Respostas
- 4390 Exibições
- Última mensagem por adauto martins

Qua Out 22, 2014 09:11
Cálculo: Limites, Derivadas e Integrais
-
- integral por partes
por rita becher » Qua Jun 01, 2011 22:05
- 2 Respostas
- 2208 Exibições
- Última mensagem por rita becher

Qui Jun 02, 2011 10:30
Cálculo: Limites, Derivadas e Integrais
-
- Integral por Partes
por Guilherme Carvalho » Ter Mar 06, 2012 23:08
- 2 Respostas
- 2014 Exibições
- Última mensagem por Guilherme Carvalho

Qua Mar 07, 2012 10:39
Cálculo: Limites, Derivadas e Integrais
-
- integral por partes
por gasparina nunes » Sáb Abr 07, 2012 23:42
- 3 Respostas
- 2430 Exibições
- Última mensagem por fraol

Dom Abr 08, 2012 22:43
Cálculo: Limites, Derivadas e Integrais
-
- Integral por partes
por liviatoniolo222 » Seg Mai 21, 2018 22:54
- 3 Respostas
- 8106 Exibições
- Última mensagem por liviatoniolo222

Ter Mai 22, 2018 20:48
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
(FGV) ... função novamente rs
Autor:
my2009 - Qua Dez 08, 2010 21:48
Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
Assunto:
(FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25
Uma função de 1º grau é dada por

.
Temos que para

,

e para

,

.

Ache o valor de

e

, monte a função e substitua

por

.
Assunto:
(FGV) ... função novamente rs
Autor:
Pinho - Qui Dez 16, 2010 13:57
my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20
Assunto:
(FGV) ... função novamente rs
Autor:
dagoth - Sex Dez 17, 2010 11:55
isso ai foi uma questao da FGV?
haahua to precisando trocar de faculdade.
Assunto:
(FGV) ... função novamente rs
Autor:
Thiago 86 - Qua Mar 06, 2013 23:11
Saudações!
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b
Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.