por alzenir agapito » Ter Mai 17, 2011 22:55
Boa Noite!!!!
Não consegui fazer o seguinte exercício:
Seja y = f(x) dadaimplicitamente pela equação 2y = 1 + x*y^3. Determine a equação da reta tangente ao gráfico de f no ponto em que y = 1.
tentei isolar Y mas da uma equação do terceiro grau.
-
alzenir agapito
- Usuário Dedicado

-
- Mensagens: 28
- Registrado em: Seg Abr 25, 2011 22:27
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: matematica
- Andamento: formado
por LuizAquino » Qua Mai 18, 2011 11:48
Eu recomendo que você assista a vídeo-aula "14. Cálculo I - Derivada de Função Implícita" no curso disponível em meu canal:
http://www.youtube.com/LCMAquinoNessa vídeo-aula há um exercício análogo a esse.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Maykids » Qui Mai 19, 2011 12:36
Louis The Aquino voce é um MITOOOOOOOOOOOOOOOOOO....................
MUITO OBRIGADO<<<<<
(ja tava tentando axar o botão pra criar topico, e ia te perguntar, se voce tem algum video sobre Implicitas, no youtube so tem peruano e espanhol po, vo assistir o seu, flws)
-
Maykids
- Usuário Dedicado

-
- Mensagens: 46
- Registrado em: Dom Mar 20, 2011 12:33
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de computação
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [DERIVADA] Reta tangente e Reta perpendicular
por antonelli2006 » Ter Nov 22, 2011 11:21
- 1 Respostas
- 8666 Exibições
- Última mensagem por LuizAquino

Ter Nov 22, 2011 14:28
Cálculo: Limites, Derivadas e Integrais
-
- [Reta Paralela à Reta Tangente]
por raimundoocjr » Qui Mai 30, 2013 18:44
- 0 Respostas
- 1150 Exibições
- Última mensagem por raimundoocjr

Qui Mai 30, 2013 18:44
Cálculo: Limites, Derivadas e Integrais
-
- Reta tangente
por AlbertoAM » Sáb Abr 30, 2011 15:32
- 1 Respostas
- 1526 Exibições
- Última mensagem por FilipeCaceres

Sáb Abr 30, 2011 19:13
Cálculo: Limites, Derivadas e Integrais
-
- Reta tangente
por AlbertoAM » Dom Mai 01, 2011 19:22
- 3 Respostas
- 2016 Exibições
- Última mensagem por LuizAquino

Seg Mai 02, 2011 20:02
Cálculo: Limites, Derivadas e Integrais
-
- Reta Tangente
por marinalcd » Sáb Out 13, 2012 16:40
- 6 Respostas
- 2414 Exibições
- Última mensagem por marinalcd

Ter Out 16, 2012 18:43
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.