por LuizAquino » Seg Mai 02, 2011 09:39
Note que

(basta tomar um x0 negativo para perceber que você deveria tomar o módulo da expressão).
Além disso, temos que

. Ou seja,

.
ObservaçãoNa grande maioria de suas mensagens aqui no fórum você não digita o texto do exercício e tão pouco a sua resolução. Você geralmente cria uma imagem desses textos e coloca aqui o endereço para ela. Por favor, eu gostaria de pedir que você parasse de fazer tal procedimento, pois ele prejudica tanto a organização do fórum quanto a utilização de ferramentas de busca. Apenas envie imagens quando for necessário.
Para a digitação das notações matemáticas esse fórum dispõe do
LaTeX. Além disso, há um
Editor de Fórmulas. Por favor, deixe a preguiça de lado e aprenda a usar esses recursos!

-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por AlbertoAM » Seg Mai 02, 2011 19:06
Entendi porque estava ocorrendo o erro de sinal.
Vou deixar a preguiça de lado e vou começar a postar as questões com o auxílio do LaTex.Desculpe qualquer transtorno.
-
AlbertoAM
- Usuário Dedicado

-
- Mensagens: 41
- Registrado em: Qui Nov 11, 2010 15:33
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
por LuizAquino » Seg Mai 02, 2011 20:02
Vou deixar a preguiça de lado e vou começar a postar as questões com o auxílio do LaTex. Desculpe qualquer transtorno.
Tenha certeza que aprender a usar o LaTeX será algo positivo para o seu aprendizado/participação aqui no Fórum!
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [DERIVADA] Reta tangente e Reta perpendicular
por antonelli2006 » Ter Nov 22, 2011 11:21
- 1 Respostas
- 8535 Exibições
- Última mensagem por LuizAquino

Ter Nov 22, 2011 14:28
Cálculo: Limites, Derivadas e Integrais
-
- [Reta Paralela à Reta Tangente]
por raimundoocjr » Qui Mai 30, 2013 18:44
- 0 Respostas
- 1093 Exibições
- Última mensagem por raimundoocjr

Qui Mai 30, 2013 18:44
Cálculo: Limites, Derivadas e Integrais
-
- Reta tangente
por AlbertoAM » Sáb Abr 30, 2011 15:32
- 1 Respostas
- 1417 Exibições
- Última mensagem por FilipeCaceres

Sáb Abr 30, 2011 19:13
Cálculo: Limites, Derivadas e Integrais
-
- Reta tangente
por alzenir agapito » Ter Mai 17, 2011 22:55
- 2 Respostas
- 1557 Exibições
- Última mensagem por Maykids

Qui Mai 19, 2011 12:36
Cálculo: Limites, Derivadas e Integrais
-
- Reta Tangente
por marinalcd » Sáb Out 13, 2012 16:40
- 6 Respostas
- 2224 Exibições
- Última mensagem por marinalcd

Ter Out 16, 2012 18:43
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
[calculo] derivada
Autor:
beel - Seg Out 24, 2011 16:59
Para derivar a função
(16-2x)(21-x).x
como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?
Assunto:
[calculo] derivada
Autor:
MarceloFantini - Seg Out 24, 2011 17:15
Você poderia fazer a distributiva e derivar como um polinômio comum.
Assunto:
[calculo] derivada
Autor:
wellersonobelix - Dom Mai 31, 2015 17:26
Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um
Assunto:
[calculo] derivada
Autor:
wellersonobelix - Dom Mai 31, 2015 17:31
derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.