• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral do módulo?

Integral do módulo?

Mensagempor Questioner » Dom Mai 16, 2010 18:15

Olá,

Estou com uma dúvida na seguinte questão:

Se f(a) = \int_{0}^{2}|x(x-a)|dx para 0\leq a \leq 2.

Encontre a função f(a)

O gabarito seria:

-\int_{0}^{a}x(x-a)dx - \int_{a}^{2} x(x-a)dx
Que seria igual a \frac{a³}{3}-2a+\frac{8}{3}

Tudo bem, resolver a integral é fácil. Mas, teoricamente, por que separar as integrais de 0 a A e de A a 2? E por que elas devem ficar negativas?

Valeu!
Questioner
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Ter Abr 20, 2010 22:13
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Integral do módulo?

Mensagempor Cahu » Qua Abr 20, 2011 23:11

Se f(a) = \int_{0}^{2}|x(x-a)|dx para 0\leq a \leq 2.

como o 0<a<2 e 0<x<2 entao para x(x-a) com x<a temos que o resultado dessa integral é negativa, por isso o sinal de menos e a divisão para 2 integrais, a segunda parte pode ser feita normalmente pois o valor é positivo e não precisa do sinal de menos.

-\int_{0}^{a}x(x-a)dx + \int_{a}^{2} x(x-a)dx
Cahu
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Abr 20, 2011 23:00
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrônica
Andamento: cursando

Re: Integral do módulo?

Mensagempor LuizAquino » Qui Abr 21, 2011 09:38

Questioner escreveu:Mas, teoricamente, por que separar as integrais de 0 a A e de A a 2? E por que elas devem ficar negativas?


Do ponto de vista teórico, é necessário apenas lembrar da definição de módulo de um número real x:

|x| = \begin{cases}x\textrm{, se } x\geq 0 \\ -x\textrm{, se } x < 0\end{cases}

Desse modo, aplicando a definição para |x(x-a)| (lembrando que 0\leq a \leq 2 e 0\leq x \leq 2 neste exercício):

|x(x-a)| = \begin{cases}x(x-a)\textrm{, se } x(x-a) \geq 0 \\ -x(x-a)\textrm{, se } x(x-a) < 0\end{cases} \Rightarrow |x(x-a)| = \begin{cases}x(x-a)\textrm{, se } x \geq a \\ -x(x-a)\textrm{, se } x < a\end{cases}

Portanto, temos que:
f(a) = \int_{0}^{2}|x(x-a)|dx = -\int_{0}^{a}x(x-a)\,dx + \int_{a}^{2} x(x-a)\,dx = \frac{1}{3}a^3 - 2a + \frac{8}{3} .

Note que apenas na primeira integral deve aparecer o sinal negativo antes dela.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}