• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equaçao diferencial

Equaçao diferencial

Mensagempor romulo39 » Dom Abr 03, 2011 20:58

Boa noite


Favor tirar uma duvida, na verdade quero saber os principio para integrar, gosto de tirar minhas duvidas com exemplos como o que envio abaixo , por parte.

desde ja agradeço

Verifique se a funçao dada é uma soluçao diferencial ( c1.e c2 sao constantes)
romulo netto


2xy dx +(x²+2Y)dy = 0; x²y + y² = C1
romulo39
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Mar 31, 2011 23:32
Formação Escolar: GRADUAÇÃO
Área/Curso: CURSO TECNICO EM LICENCIATURA MATEMATICA
Andamento: cursando

Re: Equaçao diferencial

Mensagempor LuizAquino » Seg Abr 04, 2011 14:39

Note que a equação diferencial 2xy\,dx +(x^2+2y)\,dy = 0 é a mesma que \frac{dy}{dx} = -\frac{2xy}{x^2+2y}.

Vamos agora derivar a função (implícita, y=f(x)) dada por x^2y+y^2 = c_1.

(x^2y+y^2)^\prime = c_1^\prime

(x^2y)^\prime + (y^2)^\prime = 0

(x^2)^\prime y + x^2y^\prime + 2yy^\prime = 0

2xy + x^2y^\prime + 2yy^\prime = 0

2xy + (x^2+2y)y^\prime = 0

y^\prime = -\frac{2xy}{x^2+2y}

Lembrando que fizemos y como uma função de x, temos que a notação y' e a notação \frac{dy}{dx} são equivalente, portanto:
\frac{dy}{dx} = -\frac{2xy}{x^2+2y}

Agora, uma curiosidade: Como funciona um Curso Técnico em Licenciatura Matemática? Isto é, qual é a grade curricular? Qual é a duração? Você poderia, por favor, indicar a página da instituição que oferece tal curso para que eu possa ler mais a respeito?
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59