• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Substituição

Substituição

Mensagempor LuY12 » Sáb Fev 28, 2009 16:20

Olá, colegas sou novata aqui e gostaria de ter uma ajuda .Quem corrige essa resposta?


Resolver por substituição:

Integral de XDX / Raiz quarta de x+2


RES. 4/21 .[ (x+2)^1/4]^3 . [ 3 . (x+2)^1/4] - 14 +C


Obrigada!!
LuY12
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Fev 21, 2009 16:46
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica
Andamento: cursando

Re: Substituição

Mensagempor Adriano Tavares » Qua Mar 09, 2011 02:37

Olá,luY12.

\int \frac{xdx}{\sqrt[4]{x+2}}

x+2=u^4 \Rightarrow x=u^4-2

dx=4u^3du

\int \frac{(u^4-2)4u^3}{\sqrt[4]{u^4}}du =4\int \frac{(u^4-2)u^3}{u}du=4\int (u^6-2u^2) du

Escrevendo essa integral como a diferença de duas integrais teremos:

4\int (u^6-2u^2)du= 4\left(\int u^6du -2 \int u^2 du \right)

\int u^6 du = \frac{u^7}{7}+C_1\\\\ \int u^2 du =\frac{u^3}{3}+C_2

Logo teremos:

4\left(\frac{u^7}{7}+C_1-\frac{2u^3}{3}-2C_2\right)=\frac{4}{21}(3u^7+21C_1-14u^3-42C_2)

Fazendo-se 21C_1-42C_2=C teremos:

\frac{4}{21}(3u^7-14u^3+C)

Substituindo o valor de u tem-se :

\int \frac{xdx}{\sqrt[4]{x+2}}=\frac{4}{21}(3u^7-14u^3+C)=

\frac{4}{21}[3.(x+2).(\sqrt[4]{(x+2)^3}}-14\sqrt[4]{(x+2)^3}}+C]
Adriano Tavares
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Seg Mar 07, 2011 16:03
Formação Escolar: GRADUAÇÃO
Área/Curso: Tecnólogo em automação industrial
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}