• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Calculo 1:Limites com Indeterminação e que possue radicaçião

Calculo 1:Limites com Indeterminação e que possue radicaçião

Mensagempor MarcusPassos » Qui Mar 03, 2011 17:37

f^\prime(x)\ =         \lim_{\ x\to9}\frac{2x-18}{\sqrt{x}-3}

Gostaria de pedir a ajudar de vocês para responder esta questão , eu multiplico e divido pelo conjugado , mas não acho o resultado correto.

Grato desde ja!
MarcusPassos
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Mar 03, 2011 17:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. mecatronica
Andamento: cursando

Re: Calculo 1:Limites com Indeterminação e que possue radica

Mensagempor LuizAquino » Qui Mar 03, 2011 18:40

MarcusPassos escreveu:eu multiplico e divido pelo conjugado , mas não acho o resultado correto.

Poste aqui o que você fez. Desse modo, podemos achar onde está o erro.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Calculo 1:Limites com Indeterminação e que possue radica

Mensagempor MarcusPassos » Qui Mar 03, 2011 19:06

eu paro nisso , porq nao da certo ->
\lim_{x\to 9}\ \frac{2\x(\sqrt{x})-6x-18x-54}{x-9}
MarcusPassos
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Mar 03, 2011 17:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. mecatronica
Andamento: cursando

Re: Calculo 1:Limites com Indeterminação e que possue radica

Mensagempor MarceloFantini » Qui Mar 03, 2011 20:40

Você está fazendo a distributiva, o que dificulta sua vida:

\lim_{x \to 9} \frac {2(x-9)(\sqrt{x} +3)}{x-9} = \lim_{x \to 9} 2(\sqrt{x} + 3) = 12
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Calculo 1:Limites com Indeterminação e que possue radica

Mensagempor MarcusPassos » Qui Mar 03, 2011 21:22

Muito , Muito obrigado mesmo amigo ,ja tava arrancando os poucos fios de kbelo que tenho :D
MarcusPassos
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Mar 03, 2011 17:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. mecatronica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.