por Zkz » Sáb Set 13, 2008 20:30
Eu tentei resolver essa questão, mas não tenho certeza de que o procedimento está correto.

Eu fiz:



Substituindo:


Aplicando a propriedade logarítma:

Bem, aqui é que está, continua dando indeterminação. Postei aqui o raciocínio que eu segui...alguém pode me dar uma luz?
Ah! Desculpa se estiver um tanto confuso, é a primeira vez que uso latex.
-
Zkz
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Sáb Set 13, 2008 19:12
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia da computação
- Andamento: cursando
por admin » Ter Set 16, 2008 21:20
Olá
Zkz, boas-vindas!
Para obter uma expressão sem indeterminação, tente utilizar diferença de quadrados e diferença de cubos. Depois, após uma simplificação, coloque

em evidência (numerador e denominador).
Sobre a fatoração por diferenças de quadrados e cubos, visualizei assim:
![\lim_{n\to 0} \left(\frac{e^{2x}-1}{e^{3x}-1}\right) =
\lim_{n\to 0} \left[\frac{(e^x)^2-1^2}{(e^x)^3-1^3}\right] = \cdots \lim_{n\to 0} \left(\frac{e^{2x}-1}{e^{3x}-1}\right) =
\lim_{n\to 0} \left[\frac{(e^x)^2-1^2}{(e^x)^3-1^3}\right] = \cdots](/latexrender/pictures/cae1798e3ec6f9b8ea2a3948a3ae4a17.png)
Bons estudos!
-

admin
- Colaborador Administrador - Professor

-
- Mensagens: 885
- Registrado em: Qui Jul 19, 2007 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática IME-USP
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Provando sobre neperiano e ??
por Questioner » Ter Abr 20, 2010 22:20
- 7 Respostas
- 4139 Exibições
- Última mensagem por Questioner

Sáb Abr 24, 2010 12:42
Cálculo: Limites, Derivadas e Integrais
-
- Exponencial neperiano envolvendo complexos
por marciopc » Sáb Out 31, 2009 12:56
- 0 Respostas
- 1898 Exibições
- Última mensagem por marciopc

Sáb Out 31, 2009 12:56
Funções
-
- Derivadas parciais com neperiano e seno.
por iksin » Qui Set 20, 2018 14:20
- 1 Respostas
- 5524 Exibições
- Última mensagem por Gebe

Qui Set 20, 2018 14:39
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] Gráfico e limite para função maior inteiro
por Raphaela_sf » Qui Abr 05, 2012 19:26
- 1 Respostas
- 6472 Exibições
- Última mensagem por LuizAquino

Qui Abr 05, 2012 20:53
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] Limite de funções reais de várias variáveis
por Bianca_R » Dom Nov 04, 2012 17:17
- 1 Respostas
- 4552 Exibições
- Última mensagem por MarceloFantini

Dom Nov 04, 2012 19:37
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.