• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivada] Com duas variáveis e derivada mista

[Derivada] Com duas variáveis e derivada mista

Mensagempor leticiaeverson » Dom Abr 22, 2018 00:39

Calcule (df/dx ; df/dy) ,e as derivadas mistas em cada caso:
a) f(x,y)= 3x^{4}– 2xy² + y{5}
b) f(x,y)= cos²(3x) + sen²(3y)
c) f(x,y)=Ln(3x –y³)
leticiaeverson
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Dom Abr 22, 2018 00:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: [Derivada] Com duas variáveis e derivada mista

Mensagempor Gebe » Dom Abr 22, 2018 03:39

leticiaeverson escreveu:Calcule (df/dx ; df/dy) ,e as derivadas mistas em cada caso:
a) f(x,y)= 3x^{4}– 2xy² + y{5}
b) f(x,y)= cos²(3x) + sen²(3y)
c) f(x,y)=Ln(3x –y³)


a)
\\
f(x,y)=3x^{4}-2xy^2+y^5\\
\\
\\
\frac{\partial f}{\partial x}=4*3x^{3}-1*2*1y^{2}+0=12x^3-2y^2\\
\\
\\
\frac{\partial f}{\partial y}=0-2*2xy^1+5y^4=-4xy+5y^4\\
\\
\\
\frac{\partial^2 f}{\partial x \partial y}=\frac{\partial \left( \frac{\partial f}{\partial x} \right)}{\partial y}=\frac{\partial \left(12x^3-2y^2 \right)}{\partial y}=0-2*2y^1=-4y

b)
\\
f(x,y)=cos^2\left(3x \right)+sen^2\left(3y \right)\\
\\
usando\;a\;regra\;da\;cadeia\\
\frac{\partial f}{\partial x}=2*cos^1(3x)* \left( -sen(3x) \right)*3+2sen^1(3y)*\left(cos(3y) \right)*0=-6cos(3x)sen(3x)\\
\\
\\
\frac{\partial f}{\partial y}=2*cos^1(3x)* \left( -sen(3x) \right)*0+2sen^1(3y)*\left(cos(3y) \right)*3=6cos(3y)sen(3y)\\
\\
\\
\frac{\partial^2 f}{\partial x \partial y}=\frac{\partial \left( \frac{\partial f}{\partial x} \right)}{\partial y}=\frac{\partial \left(-6cos(3x)sen(3x) \right)}{\partial y}=0

c)
\\
f(x,y)=ln\left(3x-y^3 \right)\\
\\
usando\;a\;regra\;da\;cadeia\\
\frac{\partial f}{\partial x}=\frac{1}{\left( 3x-y^3 \right)}*\left(3-0 \right)=\frac{3}{3x-y^3}\\
\\
\\
\frac{\partial f}{\partial y}=\frac{1}{\left( 3x-y^3 \right)}*\left(0-3y^2 \right)=-\frac{3y^2}{3x-y^3}\\
\\
\\
\frac{\partial^2 f}{\partial x \partial y}=\frac{\partial \left( \frac{\partial f}{\partial x} \right)}{\partial y}=\frac{\partial \left(\frac{3}{3x-y^3} \right)}{\partial y}=\frac{0*\left(3x-y^3 \right)-\left( -3y^2 \right)*(3)}{\left(3x-y^3 \right)^2}=\frac{9y^2}{\left(3x-y^3 \right)^2}

Espero ter ajudado. Se ficarem duvidas deixe msg.
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 158
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: [Derivada] Com duas variáveis e derivada mista

Mensagempor leticiaeverson » Dom Abr 22, 2018 14:46

Me ajudou muito! Consegui compreender bem! Obrigada!
leticiaeverson
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Dom Abr 22, 2018 00:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: [Derivada] Com duas variáveis e derivada mista

Mensagempor Gebe » Dom Abr 22, 2018 17:11

:y:
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 158
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59