por heldersmd » Sáb Set 15, 2012 12:42
Na questão:
ABCD é um quadradod~lado 1. P e Q são pontos em AB e BC tais que o, ângulo P DQ é igual a 45°. Prove que o perímetrodo triânguloPBQ é constante.
tentei ir pelos angulos que sobram dos 45º. assim utilizei os senos destes angulos depois tentei soma-los. depois tentei com a tangente mas tambem nao deu em nada.
Nestas questões de prove tem algum macete???
Muito, muito obrigado pela ajuda!!!!!
-
heldersmd
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Sex Set 14, 2012 16:07
- Formação Escolar: GRADUAÇÃO
- Área/Curso: vestibulando
- Andamento: cursando
por young_jedi » Sáb Set 15, 2012 14:54
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
Voltar para Geometria Plana
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Calcular perímetro do quadrado] através da área do triângulo
por lukasmetal » Qua Nov 30, 2011 12:11
- 3 Respostas
- 3663 Exibições
- Última mensagem por lukasmetal

Qui Dez 01, 2011 12:19
Geometria Plana
-
- Perímetro do triângulo
por maria cleide » Sáb Mai 28, 2011 16:49
- 3 Respostas
- 3758 Exibições
- Última mensagem por MarceloFantini

Dom Mai 29, 2011 19:55
Geometria Plana
-
- Perímetro do triângulo
por leticiadelduque » Dom Ago 21, 2011 12:02
- 2 Respostas
- 1605 Exibições
- Última mensagem por leticiadelduque

Dom Ago 21, 2011 17:02
Geometria Plana
-
- [Perímetro do Triângulo]
por Mayra Luna » Qui Out 11, 2012 23:03
- 4 Respostas
- 2042 Exibições
- Última mensagem por Mayra Luna

Sex Out 12, 2012 17:25
Geometria Plana
-
- Duvida em perimetro de triangulo
por bmachado » Dom Mar 18, 2012 17:39
- 2 Respostas
- 3817 Exibições
- Última mensagem por bmachado

Seg Mar 19, 2012 16:21
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.