• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão MACK-SP

Questão MACK-SP

Mensagempor Diego Math » Qui Set 13, 2012 19:11

Pessoal, Boa Noite

Gostaria de uma explicação detalhada da resolução desse exercício do mackenzie. Acho que voces já ouviram falar desse exercício

O triangulo ABC da figura ( não tenho a figura) foi dividido em duas partes de mesma área pelo segmento DE, que é paralelo a BC. A razão BC/DE, vale :

Resposta : alternativa d ( raiz quadrada de 2 )

Qual é o segredo para resolver exercícios desse tipo ? Tem algum macete, pois me matei de estudar semelhança de triangulos. Se possível me descrevam todo o raciocínio.

Obrigado !!
Diego Math
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Jul 19, 2012 23:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Questão MACK-SP

Mensagempor young_jedi » Qui Set 13, 2012 20:01

Imagino que o triangulo seja como o da figura

triangulo.jpg
Triangulo
triangulo.jpg (10.04 KiB) Exibido 8547 vezes


Sendo assim por semelhança de triangulos temos

\frac{BC}{{h}_{1}}&=&\frac{DE}{{h}_{2}}

{h}_{2}&=&\frac{DE.{h}_{1}}{BC}

temos que a area do triangulo ADE é igual a metade da do triangulo ABC ja que a reta DE separa o triangulo em duas
figuras de igual area

\frac{BC.{h}_{1}}{2}.\frac{1}{2}&=&\frac{DE.{h}_{2}}{2}

substituindo o valor de {h}_{2} encontrado temos

\frac{BC.{h}_{1}}{2}.\frac{1}{2}&=&\frac{DE}{2}.\frac{DE.{h}_{1}}{BC}

simplificando por {h}_{1}/2

BC&.\frac{1}{2}=&\frac{DE^2}{BC}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Questão MACK-SP

Mensagempor Nina Luizet » Sáb Jun 13, 2015 16:02

young_jedi escreveu:Imagino que o triangulo seja como o da figura

triangulo.jpg


Sendo assim por semelhança de triangulos temos

\frac{BC}{{h}_{1}}&=&\frac{DE}{{h}_{2}}

{h}_{2}&=&\frac{DE.{h}_{1}}{BC}

temos que a area do triangulo ADE é igual a metade da do triangulo ABC ja que a reta DE separa o triangulo em duas
figuras de igual area

\frac{BC.{h}_{1}}{2}.\frac{1}{2}&=&\frac{DE.{h}_{2}}{2}

substituindo o valor de {h}_{2} encontrado temos

\frac{BC.{h}_{1}}{2}.\frac{1}{2}&=&\frac{DE}{2}.\frac{DE.{h}_{1}}{BC}

simplificando por {h}_{1}/2

BC&.\frac{1}{2}=&\frac{DE^2}{BC}



Sensacional =D
Nina Luizet
Nina Luizet
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Seg Fev 16, 2015 12:39
Localização: Natal , RN , Brasil
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.