• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Semelhança de triângulos

Semelhança de triângulos

Mensagempor TAE » Qua Jun 20, 2012 01:12

boa noite,
Na figura, ABC é um triângulo retângulo cujos catetos medem 3 cm e 4cm, MNPB é um quadrado cujo lado mede x. o perímetro do triângulo retângulo ABC é de 12 cm. Verifique se é verdade que o perímetro do quadrado MNPB é a metade de perímetro do triângulo ABC.

A figura:
http://img20.imageshack.us/img20/8827/i ... 000012.jpg

Aí é fácil calcular que AC = 5 cm.

Obrigado.
“O tolo, quando erra,queixa-se dos outros; o sábio queixa-se de si mesmo.” (Sócrates, 469-399, AC).
TAE
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 30
Registrado em: Ter Mar 20, 2012 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: TÉC. ELETRÔNICA
Andamento: formado

Re: Semelhança de triângulos

Mensagempor Russman » Qua Jun 20, 2012 01:59

Por semelhança de triangulos, temos

\frac{4-x}{x} = \frac{x}{3-x}.

Agora basta descobrir o valor de x, multiplicar por 4 e dividir por 12.

\frac{4-x}{x} = \frac{x}{3-x} \Rightarrow 12-7x+x^2 = x^2\Rightarrow x=12/7

Agora,

\frac{4x}{12} = \frac{4}{7}.

Portanto, o perímetro do quadrado é \frac{4}{7} do perímetro do triângulo.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Semelhança de triângulos

Mensagempor Russman » Qua Jun 20, 2012 05:01

Para que o perímetro do quadrado fosse metade do perímetro do triângulo seria necessário que a razão ente os lados do triangulo fosse

\frac{1}{7}(9-4\sqrt{2})

ou

\frac{1}{7}(9+4\sqrt{2})
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}