• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Semelhança de triângulos

Semelhança de triângulos

Mensagempor TAE » Qua Jun 20, 2012 01:12

boa noite,
Na figura, ABC é um triângulo retângulo cujos catetos medem 3 cm e 4cm, MNPB é um quadrado cujo lado mede x. o perímetro do triângulo retângulo ABC é de 12 cm. Verifique se é verdade que o perímetro do quadrado MNPB é a metade de perímetro do triângulo ABC.

A figura:
http://img20.imageshack.us/img20/8827/i ... 000012.jpg

Aí é fácil calcular que AC = 5 cm.

Obrigado.
“O tolo, quando erra,queixa-se dos outros; o sábio queixa-se de si mesmo.” (Sócrates, 469-399, AC).
TAE
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 30
Registrado em: Ter Mar 20, 2012 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: TÉC. ELETRÔNICA
Andamento: formado

Re: Semelhança de triângulos

Mensagempor Russman » Qua Jun 20, 2012 01:59

Por semelhança de triangulos, temos

\frac{4-x}{x} = \frac{x}{3-x}.

Agora basta descobrir o valor de x, multiplicar por 4 e dividir por 12.

\frac{4-x}{x} = \frac{x}{3-x} \Rightarrow 12-7x+x^2 = x^2\Rightarrow x=12/7

Agora,

\frac{4x}{12} = \frac{4}{7}.

Portanto, o perímetro do quadrado é \frac{4}{7} do perímetro do triângulo.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Semelhança de triângulos

Mensagempor Russman » Qua Jun 20, 2012 05:01

Para que o perímetro do quadrado fosse metade do perímetro do triângulo seria necessário que a razão ente os lados do triangulo fosse

\frac{1}{7}(9-4\sqrt{2})

ou

\frac{1}{7}(9+4\sqrt{2})
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.