• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Essa n é pra qualquer um!

Essa n é pra qualquer um!

Mensagempor bmachado » Ter Mai 22, 2012 15:53

Na ilustração a seguir os segmentos, AD e BD eStao naS biSSetrizeS respectivas Dos ângulos CAB e CBA do triangulo ABC, e EF, que contem D, é paralela a AB.e AC=12 e BC=8, qual o perímetro do triangulo CEF?
Obrigado colaborar com minha preparação!
quetao trian.png
quetao trian.png (11.51 KiB) Exibido 7356 vezes
bmachado
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Qua Fev 29, 2012 00:28
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: EF
Andamento: formado

Re: Essa n é pra qualquer um!

Mensagempor Anniemf » Qua Mai 23, 2012 21:26

No triângulo ADE,vamos designar o ângulo EÂD como sendo alfa.Como AD é bissetriz,o ângulo DÂB também vale alfa.
Como a reta AB e EF são paralelas,os ângulos DÂB E A^DE são alternos internos e o ângulo A^DE também vale alfa.Com isso,concluímos que o triângulo AED é isósceles.Chamando o segmento ED=x,o segmento AE também é igual a x.

De maneira análoga,faremos o mesmo com o triãngulo BDF.Vamos designar o ãngulo D^BF como sendo beta.Como BD é bissetriz,o ângulo D^BA também vale beta.Os ângulos D^BA E F^DB são alternos internos e com isso o ângulo F^DB também vale beta.Sendo assim,o triângulo BDF é isósceles.Chamando o segmento DF=Y,o segmento FB também é igual a y.

Como o segmento AC=12 e o segmento AE=X,EC=12-X
Como o segmento BC=8 e o segmento FB=Y,CF=8-Y

Perímetro do triângulo CEF= 12-X+X+Y+8-Y=20
Anniemf
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qua Mar 28, 2012 14:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Essa n é pra qualquer um!

Mensagempor bmachado » Qua Mai 23, 2012 23:07

Veja, no link abaixo, a questão 8, em que aparece a resposta com a respectiva justificativa:

4shared.com /doc/pp80PUOO/preview.html
bmachado
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Qua Fev 29, 2012 00:28
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: EF
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: