• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Geometria Plana - Circunferência] Palanque

[Geometria Plana - Circunferência] Palanque

Mensagempor raimundoocjr » Sex Mai 04, 2012 20:36

(Adaptado) TEXTO para a questão 1:
A construção da cobertura de um palanque usado na campanha política, para o 1º turno das eleições passadas, foi realizada conforme a figura. Para fixação da lona sobre a estrutura de anéis, foram usados rebites assim dispostos: 4 no primeiro anel, 16 no segundo, 64 no terceiro e assim sucessivamente.
Imagem
1. Supondo que todos os anéis da cobertura do palanque num mesmo plano formem um gráfico de oito setores iguais, a razão entre a área da região hachurada e o comprimento da circunferência externa do anel externo é:
a) o dobro do raio.
b) a quarta parte do raio.
c) a metade do raio.
d) o triplo do raio.
e) a terça parte do raio

Tentativa de Resolução;
Pensei em unir Progressão Geométrica e Estatística, mas não cheguei no resultado ainda.

Gabarito: B
raimundoocjr
 

Re: [Geometria Plana - Circunferência] Palanque

Mensagempor Guill » Dom Mai 06, 2012 09:45

Vamos facilitar tudo. Está vendo que temos 2 setores brancos na parte de baixo ?? Troque de lugar com os pretos e veja que a área total dos setores pretos não passa de metade da área da circunferência externa do último anel. Agora ficou simples:

\frac{{A}_{setores}}{C} = \frac{\frac{\pi.r^2}{2}}{2.\pi.r}

\frac{{A}_{setores}}{C} = \frac{r}{4}
Avatar do usuário
Guill
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Dom Jul 03, 2011 17:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}