• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Geometria Plana - Circunferência] Palanque

[Geometria Plana - Circunferência] Palanque

Mensagempor raimundoocjr » Sex Mai 04, 2012 20:36

(Adaptado) TEXTO para a questão 1:
A construção da cobertura de um palanque usado na campanha política, para o 1º turno das eleições passadas, foi realizada conforme a figura. Para fixação da lona sobre a estrutura de anéis, foram usados rebites assim dispostos: 4 no primeiro anel, 16 no segundo, 64 no terceiro e assim sucessivamente.
Imagem
1. Supondo que todos os anéis da cobertura do palanque num mesmo plano formem um gráfico de oito setores iguais, a razão entre a área da região hachurada e o comprimento da circunferência externa do anel externo é:
a) o dobro do raio.
b) a quarta parte do raio.
c) a metade do raio.
d) o triplo do raio.
e) a terça parte do raio

Tentativa de Resolução;
Pensei em unir Progressão Geométrica e Estatística, mas não cheguei no resultado ainda.

Gabarito: B
raimundoocjr
 

Re: [Geometria Plana - Circunferência] Palanque

Mensagempor Guill » Dom Mai 06, 2012 09:45

Vamos facilitar tudo. Está vendo que temos 2 setores brancos na parte de baixo ?? Troque de lugar com os pretos e veja que a área total dos setores pretos não passa de metade da área da circunferência externa do último anel. Agora ficou simples:

\frac{{A}_{setores}}{C} = \frac{\frac{\pi.r^2}{2}}{2.\pi.r}

\frac{{A}_{setores}}{C} = \frac{r}{4}
Avatar do usuário
Guill
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Dom Jul 03, 2011 17:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}