• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Número de lados de um polígono

Número de lados de um polígono

Mensagempor Pri Ferreira » Seg Abr 09, 2012 15:59

Um polígono rgular cum um número par de lados possui d diagonais, que não passam pelo centro da circunferência que o circunscreve. Esse poligono possui o seguinde número de lados.
a)4+\sqrt[]{4+2d}
b)4+\sqrt[]{2+4d}
c)2+\sqrt[]{4+2d}
d)2+\sqrt[]{2+4d}
Por favor, ajuda!!!
Pri Ferreira
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 59
Registrado em: Qua Out 19, 2011 20:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: formado

Re: Número de lados de um polígono

Mensagempor LuizAquino » Qui Abr 12, 2012 18:29

Pri Ferreira escreveu:Um polígono rgular cum um número par de lados possui d diagonais, que não passam pelo centro da circunferência que o circunscreve. Esse poligono possui o seguinde número de lados.
a)4+\sqrt[]{4+2d}
b)4+\sqrt[]{2+4d}
c)2+\sqrt[]{4+2d}
d)2+\sqrt[]{2+4d}


Sabemos que o total de diagonais de um polígono regular com n lados é dado por \frac{n(n-3)}{2} .

Além disso, sabemos que em um polígono regular de n lados, com n par, ao todo n/2 diagonais passam pelo centro.

Portanto, temos que em um polígono regular de n lados, com n par, ao todo \frac{n(n-3)}{2} - \frac{n}{2} diagonais não passam pelo centro.

De acordo com os dados do exercício, temos que:

d = \dfrac{n(n-3)}{2} - \dfrac{n}{2}

Agora tente terminar o exercício. Note que basta isolar n na equação acima.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}