• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Triângulo inscrito

Triângulo inscrito

Mensagempor laisv11 » Qui Mai 28, 2009 16:33

Preciso de algumas dicas em como encontrar o raio de uma circunferencia incrita em triângulo.
Acho que existem formas diferentes de calcular entre triangulo equilatero e triangulo qualquer (isósceles, retangulo..). Quais são?
Por exemplo, em um exercício que dá a medida dos três lados do triângulo (na circnferência), como acho o raio?
laisv11
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Mai 15, 2009 15:59
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Triângulo inscrito

Mensagempor Molina » Sáb Mai 30, 2009 15:40

Boa tarde, Lais.

Procure achar as medianas dos três lados desse triângulo, ou seja, achar o segmento que liga um vértice ao ponto médio do lado oposto a este vértice. Cada lado tem um ponto médio (metade dele), você deve ligar ao vértice oposto a ele. O encontro das 3 medianas, vai dar um ponto conhecido como baricentro (figura 1 do anexo).

Você está a procura do incentro, que é o centro da circunferência inscrita no triângulo. Seja C o centro da circunferência inscrita no triângulo, a circunferência tangência os lados do triângulo nos pontos K , L e M . Então: CK = CL = CM

Como você mesmo supoes, há formas diferentes de calcular o raio em triângulos diferentes, por exemplo, no triângulo equilátero o baricentro, o ortocentro, o incentro e o circuncentro coincidem, por isso que é mais fácil calcular.

Repasse sua questão que eu posso dar algumas dicar de como resolver, ok?


Bom estudo, :y:
Anexos
baricentro.gif
Baricentro, fig. 1
baricentro.gif (6.12 KiB) Exibido 9040 vezes
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1546
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Triângulo inscrito

Mensagempor Marcampucio » Sáb Mai 30, 2009 17:53

Oi Molina,

como você fez essa maravilha de figura animada???
A revelação não acontece ao encontrar o sábio no alto da montanha. A revelação vem com a subida da montanha.
Marcampucio
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Ter Mar 10, 2009 17:48
Localização: São Paulo
Formação Escolar: GRADUAÇÃO
Área/Curso: geologia
Andamento: formado

Re: Triângulo inscrito

Mensagempor laisv11 » Sáb Mai 30, 2009 19:06

Boa Noite

A questão é
Determine o raio da circunferencia inscrita no triangulo retângulo de lados 7cm, 24 cm e 25 cm.

Mas tenho uma outra duvida tambem:
-O triângulo ABC está inscrito numa circunferencia de raio 5cm. Sabe-se que A
e B são extremidades de um diâmetro e a corda BC mede 6 cm. Encontre área do triangulo ABC.

Como acho a altura desse triângulo? (pra calcular a área, né?!)


Bom, se você tiver tempo...
Mas muito obriagada!!
laisv11
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Mai 15, 2009 15:59
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Triângulo inscrito

Mensagempor Molina » Sáb Mai 30, 2009 22:05

laisv11 escreveu:Boa Noite

A questão é
Determine o raio da circunferencia inscrita no triangulo retângulo de lados 7cm, 24 cm e 25 cm.


Olá.

Este triângulo que você passou os valores é um triângulo retângulo, pois a² = b² + c² correto?
Neste triângulo, voce pode resolver de vários modos:

Modo 1) r = p - a, onde r é o raio, p é o perímetro e a o lado maior do triângulo
e podemos usar outra relação: 2p = a + b + c.

Desta ultima, você descobre p e joga na primeira fórmula, encontrando o raio, correto?

Qualquer dúvida, eu repasso outro modo de resolução, mas acho esse o mais simples.



Bom estudo, :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1546
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}