• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Triângulo inscrito

Triângulo inscrito

Mensagempor laisv11 » Qui Mai 28, 2009 16:33

Preciso de algumas dicas em como encontrar o raio de uma circunferencia incrita em triângulo.
Acho que existem formas diferentes de calcular entre triangulo equilatero e triangulo qualquer (isósceles, retangulo..). Quais são?
Por exemplo, em um exercício que dá a medida dos três lados do triângulo (na circnferência), como acho o raio?
laisv11
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Mai 15, 2009 15:59
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Triângulo inscrito

Mensagempor Molina » Sáb Mai 30, 2009 15:40

Boa tarde, Lais.

Procure achar as medianas dos três lados desse triângulo, ou seja, achar o segmento que liga um vértice ao ponto médio do lado oposto a este vértice. Cada lado tem um ponto médio (metade dele), você deve ligar ao vértice oposto a ele. O encontro das 3 medianas, vai dar um ponto conhecido como baricentro (figura 1 do anexo).

Você está a procura do incentro, que é o centro da circunferência inscrita no triângulo. Seja C o centro da circunferência inscrita no triângulo, a circunferência tangência os lados do triângulo nos pontos K , L e M . Então: CK = CL = CM

Como você mesmo supoes, há formas diferentes de calcular o raio em triângulos diferentes, por exemplo, no triângulo equilátero o baricentro, o ortocentro, o incentro e o circuncentro coincidem, por isso que é mais fácil calcular.

Repasse sua questão que eu posso dar algumas dicar de como resolver, ok?


Bom estudo, :y:
Anexos
baricentro.gif
Baricentro, fig. 1
baricentro.gif (6.12 KiB) Exibido 9012 vezes
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1546
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Triângulo inscrito

Mensagempor Marcampucio » Sáb Mai 30, 2009 17:53

Oi Molina,

como você fez essa maravilha de figura animada???
A revelação não acontece ao encontrar o sábio no alto da montanha. A revelação vem com a subida da montanha.
Marcampucio
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Ter Mar 10, 2009 17:48
Localização: São Paulo
Formação Escolar: GRADUAÇÃO
Área/Curso: geologia
Andamento: formado

Re: Triângulo inscrito

Mensagempor laisv11 » Sáb Mai 30, 2009 19:06

Boa Noite

A questão é
Determine o raio da circunferencia inscrita no triangulo retângulo de lados 7cm, 24 cm e 25 cm.

Mas tenho uma outra duvida tambem:
-O triângulo ABC está inscrito numa circunferencia de raio 5cm. Sabe-se que A
e B são extremidades de um diâmetro e a corda BC mede 6 cm. Encontre área do triangulo ABC.

Como acho a altura desse triângulo? (pra calcular a área, né?!)


Bom, se você tiver tempo...
Mas muito obriagada!!
laisv11
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Mai 15, 2009 15:59
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Triângulo inscrito

Mensagempor Molina » Sáb Mai 30, 2009 22:05

laisv11 escreveu:Boa Noite

A questão é
Determine o raio da circunferencia inscrita no triangulo retângulo de lados 7cm, 24 cm e 25 cm.


Olá.

Este triângulo que você passou os valores é um triângulo retângulo, pois a² = b² + c² correto?
Neste triângulo, voce pode resolver de vários modos:

Modo 1) r = p - a, onde r é o raio, p é o perímetro e a o lado maior do triângulo
e podemos usar outra relação: 2p = a + b + c.

Desta ultima, você descobre p e joga na primeira fórmula, encontrando o raio, correto?

Qualquer dúvida, eu repasso outro modo de resolução, mas acho esse o mais simples.



Bom estudo, :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1546
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D