• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão 27 do CEFET MG 2007

Questão 27 do CEFET MG 2007

Mensagempor Eduardo Goncalves » Sex Fev 10, 2012 10:41

Bom dia! Na questão 27 do CefetMG :
Na figura, AB = 4, BC = 2, AC é diâmetro e os ângulos

ABD

e

CBD

são iguais. A medida da corda

BD

é;
Sabemos que o ângulo ABC é 90º.
Consegui achar por Pitágoras o valor de AC.
Considerando P o ponto de intersecção de AC e BD.
Pelos dados, BP é bissetriz de 90º.
Pelo teorema da bissetriz, temos que AP/4 = CP/2. Então AP = 2CP.
Mas não consegui encontrar outra relação para achar BD.

Aguardo retorno.

Obrigado.
Eduardo Goncalves
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sex Fev 10, 2012 10:05
Formação Escolar: ENSINO MÉDIO
Área/Curso: Curso Técnico em informática
Andamento: formado

Re: Questão 27 do CEFET MG 2007

Mensagempor MarceloFantini » Sex Fev 10, 2012 14:15

E onde está a figura?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Questão 27 do CEFET MG 2007

Mensagempor Eduardo Goncalves » Sex Fev 10, 2012 15:11

A figura está no link abaixo, questão 27 - cefet 2007.
Obrigada.


http://www.copeve.cefetmg.br/galerias/a ... 1_2007.pdf
Eduardo Goncalves
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sex Fev 10, 2012 10:05
Formação Escolar: ENSINO MÉDIO
Área/Curso: Curso Técnico em informática
Andamento: formado

Re: Questão 27 do CEFET MG 2007

Mensagempor MarceloFantini » Sex Fev 10, 2012 21:24

Eduardo, procure anexar a imagem e não fazer o link a um site externo.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Questão 27 do CEFET MG 2007

Mensagempor Eduardo Goncalves » Sáb Fev 11, 2012 00:43

Figura
Anexos
fig.JPG
fig.JPG (3.42 KiB) Exibido 7497 vezes
Eduardo Goncalves
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sex Fev 10, 2012 10:05
Formação Escolar: ENSINO MÉDIO
Área/Curso: Curso Técnico em informática
Andamento: formado

Re: Questão 27 do CEFET MG 2007

Mensagempor LuizAquino » Sáb Fev 11, 2012 12:52

Eduardo Goncalves escreveu:Na figura, AB = 4, BC = 2, AC é diâmetro e os ângulos ABD e CBD são iguais. A medida da corda BD é:

figura_da_questão.jpg
figura_da_questão.jpg (3.42 KiB) Exibido 7493 vezes




Sabemos que o ângulo ABC é 90º.
Consegui achar por Pitágoras o valor de AC.
Considerando P o ponto de intersecção de AC e BD.
Pelos dados, BP é bissetriz de 90º.
Pelo teorema da bissetriz, temos que AP/4 = CP/2. Então AP = 2CP.
Mas não consegui encontrar outra relação para achar BD.


Considere a figura abaixo.

figura.png
figura.png (7.79 KiB) Exibido 7493 vezes


O ponto O é o centro da circunferência. O arco CD mede 90º, pois o seu ângulo inscritos correspondente mede 45º. Dessa forma, o ângulo central COD mede 90º.

Chamando de x a medida de CP, você já sabe que AP = 2x. Note que com isso, temos que AC = 3x. Aplicando o Teorema de Pitágoras no triângulo retângulo ABC, podemos determinar a medida de AC e consequentemente o valor de x.

Considerando o triângulo retângulo DOP, o cateto OD corresponde ao raio da circunferência (e portanto OD = AC/2). Já o cateto OP é igual a OC - x (sendo que OC é outro raio da circunferência). Considerando que as medidas dos catetos OD e OP já serão conhecidas, podemos calcular o valor da hipotenusa PD.

Considerando agora o triângulo PBC, já conhecemos as medidas de seus lados BC e CP. Aplicando a Lei dos Cossenos, podemos obter a medida de seu lado BP.

Como já conhecemos as medidas de BP e PD, podemos calcular a medida de BD, já que BD = BP + PD.

Agora basta você terminar o exercício.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59